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Abstract

Background:

Incorporating both the principles of quantum theory and the principles of relativity theory into
one unique mathematical framework could be of help to provide us with a satisfactory description
of the microstructure of spacetime, even at the so-called Planck scale, while unifying the four basic
fields of nature.

Methods:

Our contemporary understanding of gravity is based more or less on general relativity theory,
which prefers to describe gravitation from a geometric point of view as something like curvature
of spacetime caused by matter and energy. Therefore, the quantization of gravity as derived in this
publication is based on the quantization of spacetime geometry independently of extreme technical
difficulties and the profound methodological and other challenges. Furthermore, the treatment of
time is of central importance in any form of quantum gravity. The relationship between time and
gravitational field has been reinvestigated again.

Results:

A relativistic, gravitational Schrödinger wave equation has been derived. A re-examination of the
relationship between time and gravitational field implies the equivalence of time and gravitational
field.

Conclusion:

The gravitational field itself has been quantized.

Keywords: Cause; Effect; Causation; Energy; Time; Space; Quantum gravity

1. Introduction

It is not easy to say what energy, time and space 1 , 2 really are. Nonetheless, a new focus on
these old questions might generate at least some new arguments and insights. In compliance with the
time-honoured principle of going from the known to the unknown, it seems reasonable to highlight
quite a few positions of single authors. One of these single authors is Tycho Brahe (1546-1601), born

1Ashtekar A. New variables for classical and quantum gravity. Phys Rev Lett. 1986 Nov 3;57(18):2244-2247. doi: 10.1103/Phys-
RevLett.57.2244. PMID: 10033673.

2Rovelli C. Loop Quantum Gravity. Living Rev Relativ. 2008;11(1):5. doi: 10.12942/lrr-2008-5. Epub 2008 Jul 15. PMID:
28179822; PMCID: PMC5256093.
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Tyge Ottesen Brahe (Brahe, 1602), a Danish astronomer, who performed very accurate astronomical
observations of the motions of planets and their moons. Based on an analysis of the data obtained by
Brahe’s own observations of objective reality (Einstein et al., 1935a), Brahe’s appointed successor at
the court of Rudolph II, the German astronomer Johannes Kepler (1571-1630), derived his three laws
of planetary motion (Kepler, 1609). Fortunately, it didn’t take that long, and Isaac Newton (1643-
1727) put forward his famous law of gravitation (Newton, 1687) in 1687. However, it deserves to be
considered that especially Newton himself insisted on absolute space and absolute time. Nonetheless,
in the history of physics from Aristotle through to Leibniz and other, authors denied that space and time
(see Barukčić, 2011) are real entities at all. Leibniz himself simply denied any mind-independent
reality of space and time. To make matters worse, the reader should note that as long as we have
to follow, be it voluntary or unvoluntary, the path laid out by the very influential idealistic German
philosopher Immanuel Kant (1724–1804), we do face the fact that

“Time is not

something objective and real,

neither a substance, nor an accident, nor a relation. ”

(see Kant, 1770)

(see also (English) Kant, 1894, p. 61)

Kant himself from his own perspective leaves no scope for any reasonable doubt about space to.

“Space is not

something objective and real,

neither substance, nor accident, nor relation ;

but subjective and ideal ... ”

(see also Kant, 1770)

(see also (English) Kant, 1894, p. 65)

The German philosopher Immanuel Kant (see also Kant, Immanuel, 1786) published 1786 his book
Metaphysical Foundations of Natural Science (German: Metaphysische Anfangsgründe der Natur-
wissenschaft) which had a basic influence on scientific development. Kant tried to show that human
knowledge can be gained independently of any human experience or experiment. At the end, categories
or pure concepts of the understanding are enough. However, this concept did not go unchallenged. Let
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us hear what Albert Einstein thinks about Kant’s metaphysics and the importance of Kant in the foun-
dations of natural science.

“Das ist die Erbsünde Kants, dass Begriffe und Kategorien, die nicht aus der Erfahrung gewonnen
werden können, zum Verständnis dieser Erfahrung notwendig sein sollen. Unbefriedigend bleibt

dabei aber immer die Willkür der Auswahl derjenigen Elemente, die man als apriorisch bezeichnet.
”

(see also Fölsing, Albrecht, 1993, p. 544)

Furthermore, with respect to Kant’s point of view, Albert Einstein (1879–1955) is asking in general:

“What, then, impels us to devise theory after theory?

Why do we devise theories at all? ...

Because we enjoy ... reducing phenomena by the process of logic

to something already known or (apparently) evident. ”

(see also Einstein, 1950, p. 13)

Newton’s theory of gravitation, space and time collided soon with Albert Einstein’s (1879–1955) point
of view and Einstein’s special (see Einstein, 1905c,d, 1908) and general (see Einstein, 1915, 1916,
1917, 1950, Einstein and de Sitter, 1932) theory of relativity. Einstein’s mathematical unification of
space and time into space-time, first proposed by the mathematician Hermann Minkowski (1864-1909)
in 1908 (Minkowski, 1908, 1909), culminated in Einstein’s colossal intellectual jump, the theory
of general relativity which makes use of a more or less four-dimensional non-Euclidean continuum
(space-time) while the curvature of space-time itself is determined by the distribution of energy/matter.
Gravitation is to a greater or lesser extent geometrized and rather a manifestation of the curvature
of space-time than a force. In particular, the very strong and equally one weak spot of Einstein’s
general theory of relativity is the geometrization of the gravitational field because other fields like the
electromagnetic field and the stress energy tensor of matter are thus far devoid (see Goenner, 2004)
of any geometrical significance. No sooner said than done, Einstein himself tried to overcome this far-
reaching shortcoming of his field equations and stressed the need to go beyond himself by advocating
the necessity of “the establishment of a unified theory by a generalization of the relativistic theory
of gravitation.” (see Einstein, 1945, p. 578). In the light of what just has been emphasized and
in order to achieve something like a unified field theory it is necessary and appropriate to geometrize
(see Einstein and Bergmann, 1938, Einstein, 1925, 1945, 1950) the electromagnetic field and the stress
energy tensor of matter too, something much easier said than done. Nonetheless, against all odds and
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difficulties, the unified field theory, a “... theory we are looking for must therefore be a generalization
of the theory of the gravitational field.” (see Einstein, 1950, p. 16) It is obviously apparent that all
this raises at least the question, what is space-time at all, is it something real? Are the past space-times
as real as the present one? Can we identify the deep trace of the past in space-time, like the trace of
bare feet in the grainy sand?
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2. Material and methods

2.2. Definitions

Definitions have interested scientist since ancient times, while several types of definitions are often
in play. However, the character of a definition might vary with its own function. In point of fact,
inappropriate definitions can cause a lot of considerable damage.

2.3. Numbers and anti-numbers

Definition 2.1 (Numbers and anti-numbers). In general, let E(RUt) denote a number from the point
of view of a stationary observer(Einstein, 1905d), let E(RUt) denote an anti number, the other of the
number E(RUt) again from the point of view of a stationary observer(Einstein, 1905d). In general, it is

RU t ≡ E(RU t)+E(RU t) (1)

In particular, RUt is in the state of superposition, a law which has been re-formulated by the Danish
geologist Nicolaus Steno (see Stenonis, Nicolai, 1669) in his 1696 book ‘De Solido Intra Naturaliter
Contento Dissertationis Prodomus ’. Thus far, under conditions where RUt = +0, it is

+E(RU t)≡−E(RU t) (2)

and vice versa. It is equally possible that

−E(RU t)≡+E(RU t) (3)

Example.

Let E(RU t) ≡ +2, let E(RU t) ≡ +3, then RU t ≡ E(RU t)+E(RU t) ≡ +2+ 3 ≡ +5. The concept
of numbers and anti-numbers represents an attempt to work out the foundations for unifying geometry
or classical logic with number theory, algebra and probability theory. In today’s mathematics, proba-
bilistic number theory founded by Paul Erdös, Aurel Friedrich Wintner and Mark Kac during the 1930s
3 , 4 is a subfield of number theory, which explicitly deals about probability theory. The probability

of a certain number would be p(E(RU t)≡ RU t) ≡ p(2 ≡ 5) ≡ E(RU t)

RU t
≡ +2

+5
≡ 0.4. Under these

conditions, the probability of a number +2 would describe the extent to which the number +2 is the
determining part of the number +5. Figure 1 might illustrate the basic relationship between number
theory, algebra and geometry in terms of Euclid’s theorem in more detail.

3Paul Erdös and Mark Kac (1939, April). On the Gaussian law of errors in the theory of additive functions. In Proceedings of the
National Academy of Science (Vol. 25, No. 4, pp. 206-207). https://doi.org/10.1073/pnas.25.4.206

4Paul Erdös and Aurel Friedrich Wintner (1939). Additive arithmetical functions and statistical independence. American Journal
of Mathematics, 61(3), 713-721. https://doi.org/10.2307/2371326
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RDt
2 = E(RUt)*E(RUt)           E(RUt) 

RUt

RDt

RDt RDt

E(RUt)                 E(RUt)

RDt

Figure 1. Euclid’s theorem, number theory and geometry.

Multiplying equation 1 by the term RUt, we obtain

(RU t × RU t)≡ (E(RU t)× RU t)+(E(RU t)× RU t) (4)

We define in general

RU t
2 ≡ RCt

2 ≡ (RU t × RU t) (5)

and
E(RU t

2)≡ Rat
2 ≡ (E(RU t)× RU t) (6)

and
E(RU t

2)≡ Rbt
2 ≡ (E(RU t)× RU t) (7)

Figure 2 might illustrate these relationships in more detail. The Pythagorean theorem as the foundation
of a relativistic number theory is given as

Rat
2 + Rbt

2 ≡ RCt
2 (8)

It is possible to normalize the relationship of equation 1. We obtain(
E(RU t)

RU t

)
+

(
E(RU t)

RU t

)
≡ RU t

RU t
≡+1 (9)
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where p(RU t) ≡
(

E(RU t)

RU t

)
is the probability of the number RUt, and p(RU t) ≡

(
E(RU t)

RU t

)
is the

probability of the anti number RUt. A number E(RUt) is equally a negation of its own anti number
E(RUt). In general, it is

E(RU t)≡ RU t −E(RU t) (10)

We define in general negation as
¬ ≡ RU t− (11)

Equation 10 changes to
E(RU t)≡ RU t −E(RU t)≡ ¬E(RU t) (12)

However, an anti number itself is a negation. In last consequence, a number is the negation of negation.

© 2021, Ilija Barukčić, Jever, Germany. All rights reserved.

RUt

RUt

E(RUt
2)

b=E(RUt
2) 1/2

b=E(RUt
2)1/2

E(RUt)

E(RUt)

E(RUt
2)

a=E(RUt
2) 1/2

a=E(RUt
2) 1/2

E(RUt
2)

E(RUt
2)

Figure 2. Pythagorean theorem as the foundation of a relativistic number theory.

Equation 9 changes to

E(RU t)≡ RU t ×
(
+1−

(
E(RU t)

RU t

))
(13)

The number E(RUt) is given by the relationship

E(RU t)
+2 ≡

(
RU t

+2)×(+1−
(

σ (RU t)
+2

(RU t+2)

))
(14)
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where σ (RU t)
+2 is the variance and is given by

σ (RU t)
+2 ≡ ∆

+2 ≡ E
(

RU t
+2)−E (RU t)

+2 ≡ E (RU t)×E (RU t)≡
(

RU t
+2)× p(RU t)× (1− p(RU t))

(15)

2.4. Probability theory

Probability theory, historically an intellectual latecomer, plays more and more an important role
in almost all the sciences and finds its way even into philosophy. Noteworthy is that non-negativity
and normalization axioms of probability theory are largely matters of convention. Still, probabilities
lie between +0 and +1, inclusive. Weighing all the circumstances of an individual event, negative
probabilities are theoretically possible. Nonetheless, to be sure, does nothing else remain for us but
to accept solely and exclusively today’s probability’s mathematical treatment? More formally, does
geometry (see also Barukčić, 2021) really has nothing to say about probability? What is probability is
a question everyone needs to find an answer for themselves?

2.4.1. The probability of an event REt

Definition 2.2 (The probability of an event REt). In general, let REt denote an event from the point
of view of a stationary observer(Einstein, 1905d), let p(REt) represent the probability of this event
(i.e. energy content) REt at Bernoulli trial t, let E(REt) represent the expectation value of this event at
Bernoulli trial t. Let Ψ(RE t) represent the wave function, a probability amplitude (Born, 1926) of an
event i.e. REt at a given (period of) time / Bernoulli trial (Uspensky, 1937) t. Let Ψ* (RE t) denote the
complex conjugate of a wave function. In general, the probability of an event(see Scheid, 1992, p. 72
) is determined as
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p(RE t)≡ p(RE t)

≡ p(RE t)× (+1)

≡ p(RE t)×
(RE t)

(RE t)

≡ p(RE t)× (RE t)

(RE t)

≡ E(RE t)

RE t

≡ p(RE t)×
p(RE t)× (RE t × RE t)

p(RE t)× (RE t × RE t)

≡ p(RE t)×
(RE t × RE t)

(RE t × RE t)
≡

E
(

RE t
2)

(RE t × RE t)

≡ p(RE t)× p(RE t)× (RE t × RE t)

p(RE t)× (RE t × RE t)

≡ E (RE t)
2

E (RE t2)

≡ Ψ(RE t)×Ψ
*(RE t)

(16)

In general, it is,

Ψ
*(RE t)≡

p(RE t)

Ψ(RE t)
(17)

and equally (see equation 15)

ln(E (RU t)×E (RU t))≡ ln(E (RU t))+ ln(E (RU t))≡ ln
(
σ (RU t)

2) (18)

However, under conditions, where p(RE t) = +1 it is

Ψ
*(RE t)≡

+1
Ψ(RE t)

(19)

By hook or by crook, the term
+1

Ψ(RE t)
is one essential and determining part of the complex conjugate

term Ψ*(RE t). Under these conditions (p(RE t) = +1), it is equally

Ψ(RE t)×Ψ
*(RE t)≡+1 (20)

2.4.2. Wave function tensor

At the same time, we strive to define a wave-function tensor denoted by Ψµν ....
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Definition 2.3 (Wave-function tensor Ψµν ...).

Ψµν ... ≡ Ψ×gµν ... (21)

or
Ψ

µν ... ≡ Ψ×gµν ... (22)

et cetera.

2.4.3. Complex conjugate Wave function tensor

The complex conjugate wave-function tensor denoted by *Ψµν ... is defined as described below.

Definition 2.4 (Complex conjugate Wave-function tensor *Ψµν ...).

*
Ψµν ... ≡ Ψ

* ×gµν ... (23)

or
*
Ψ

µν ... ≡ Ψ
* ×gµν ... (24)

et cetera.

2.4.4. Normalization condition

The inverse metric tensor gµν is of the same size as the metric tensor gµν . Thus far, whatever gµν

does, gµν undoes. Under certain circumstances, their product is the identity or unity tensor 1µν .

gµν ...∩gµν ... ≡ 1µν ... (25)

where ∩ denote the commutative multiplication of tensors. In the following, equation 25 is multiplied
by Ψ(RE t)×Ψ*(RE t). We obtain

gµν ...∩gµν ...×Ψ×Ψ
* ≡ 1µν ...×Ψ×Ψ

* ≡ (gµν ...×Ψ)∩ (gµν ...×Ψ
*)≡ Ψµν ...×Ψ

*µν ... (26)

There are conditions where,
Ψµν ...×Ψ

*µν ... ≡ 1µν ... (27)

However, this need not be given in general.

2.5. Geometry

Geometry can be traced back to the first trials of systematic logical thinking of humans. Still, the
nature of the relation between the definitions, axioms, theorems, and proofs in a system of geometry
and objective reality has to be considered in detail. Tensors are one mathematical approach to geometry.
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The tensor (see also Voigt, 1898, p. 20) calculus has been developed in some greater detail by Ricci-
Curbastro (see Ricci-Curbastro and Levi-Civita, 1900) and his student Levi-Civita on the basis of
earlier work of authors like Riemann, Christoffel, Bianchi and others. Especially, Einstein’s general
theory of relativity is expressed by the mathematical technology of tensors.

2.5.1. Tensor addition

Definition 2.5 (Tensor addition).

The sum of two second rank co-variant (Sylvester, 1851) tensors has the properties of associativity
and commutativity and is defined as

Cµν ≡ Aµν +Bµν

≡ Bµν +Aµν

(28)

The sum of two second rank contra-variant tensors has the properties of associativity and commutativ-
ity and is defined as

Cµν ≡ Aµν +Bµν

≡ Bµν +Aµν
(29)

The sum of two second rank mixed tensors has the properties of associativity and commutativity and
is defined as

Cµ
ν ≡ Aµ

ν +Bµ
ν

≡ Bµ
ν +Aµ

ν
(30)

2.5.2. Anti tensor I

Definition 2.6 (Anti tensor I).

Let aµν denote a co-variant (lower index) second-rank tensor. Let bµν , cµν et cetera denote other
co-variant second-rank tensors. Let Eµν denote the sum of these co-variant second-rank tensors. Let
the relationship aµν + bµν + cµν + ... ≡ Eµν be given. A co-variant second-rank anti tensor (see
also Barukčić, 2020c) of a tensor aµν denoted in general as aµν is defined

aµν ≡ Eµν −aµν

≡ bµν + cµν + ...
(31)

2.5.3. Anti tensor II

Definition 2.7 (Anti tensor II).

CAUSATION ISSN: 1863-9542 https://www.doi.org/10.5281/zenodo.5717335 Volume 17, Issue 9, 1–157

https://portal.issn.org/resource/ISSN/1863-9542
https://www.doi.org/10.5281/zenodo.5717335


13

Let aµν denote a contra-variant (upper index) second-rank tensor. Let bµν , cµν et cetera denote
other contra-variant (upper index) second-rank tensors. Let Eµν denote the sum of these contra-variant
(upper index) second-rank tensors. Let the relationship aµν + bµν + cµν + ... ≡ Eµν be given. A
co-variant second-rank anti tensor of a tensor aµν denoted in general as aµν is defined

aµν ≡ Eµν −aµν

≡ bµν + cµν + ...
(32)

2.5.4. Anti tensor III

Definition 2.8 (Anti tensor III).

Let aµ
ν denote a mixed second-rank tensor. Let bµ

ν , cµ
ν et cetera denote other mixed second-rank

tensors. Let Eµ
ν denote the sum of these mixed second-rank tensors. Let the relationship aµ

ν + bµ
ν

+ cµ
ν + ... ≡ Eµ

ν be given. A mixed second-rank anti tensor of a tensor aµ
ν denoted in general as

aµ
ν is defined

aµ
ν ≡ Eµ

ν −aµ
ν

≡ bµ
ν + cµ

ν + ...
(33)

2.5.5. Tensor subtraction

Definition 2.9 (Tensor subtraction).

The subtraction of two second rank co-variant tensors is defined as

Cµν ≡ Aµν −Bµν (34)

The subtraction of two second rank contra-variant tensors is defined as

Cµν ≡ Aµν −Bµν (35)

The subtraction of two second rank mixed tensors is defined as

Cµ
ν ≡ Aµ

ν −Bµ
ν (36)
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2.5.6. Symmetric and anti symmetric tensors

Definition 2.10 (Symmetric and anti symmetric tensors).

Symmetric tensors of rank 2 may represent many physical properties of objective reality. A co-
variant second-rank tensor aµν is symmetric if

aµν ≡ aνµ (37)

However, there are circumstances, where a tensor is anti-symmetric. A co-variant second-rank tensor
aµν is anti-symmetric if

aµν ≡−aνµ (38)

Thus far, there are circumstances were an anti-tensor is identical with an anti-symmetrical tensor.

aµν ≡ Eµν −bµν + ...≡ Eµν −aµν ≡−aνµ (39)

Under conditions where Eµν = 0, an anti-tensor is identical with an anti-symmetrical tensor or it is

−aµν ≡−aνµ (40)

However, an anti-tensor is not identical with an anti-symmetrical tensor as such.

Definition 2.11 (Multiplication of tensors). Let gkl or gµν denote a 2-index metric tensors. Let gklµν

denote a 4-index metric tensors. Let gklµν . . . denote a n-th index metric tensor. The n-index metric
tensor gklµν . . . itself is a covariant symmetric tensor and equally an example of a tensor field. If we
pause for a moment today and rely on Einstein’s “Die Grundlage der allgemeinen Relativitätstheorie
” (see Einstein, 1916, p. 784), it is

gklµν ≡ gklgµν (41)

and in the case of n-th rank order
gklµν . . . ≡ gklgµν . . . (42)

The mixed and contra-variant cases are similar. Riemann defined the distance between two neigh-
bouring points more or less by a quadratic differential form. The geometry based on the positive
definite Riemannian metric tensor is called the Riemannian geometry. However, tensor calculus as a
generalization of classical linear algebra should assure that formulae are invariant under coordinate
transformations and that the same are independent of any kind of the rank order of the metric tensor
chosen. Some rules of the multiplication of tensors are provided to us by Einstein (see Einstein, 1916)
himself.

T a b c ≡ Aa bBc (43)

(see Einstein, 1916, p. 784)

Furthermore, it is
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T a b c d ≡ Aa bBc d (44)

(see Einstein, 1916, p. 784)

and equally

T c d
a b ≡ Aa bBc d (45)

(see Einstein, 1916, p. 784)

A scalar F, or a tensor of zero rank, is given by the relationship

F ≡ Fb
b ≡ Fa b

a b ≡ Fa bFa b (46)

(see Einstein, 1916, p. 785)

The covariant and contravariant products of two rank 2 tensors give the same value and result in a
scalar. In general, scalar products are operations on two tensors of the same rank that yield a scalar.
The relationship (see equation 46, p. 15) is of importance for the fundamental invariants of the elec-
tromagnetic field too. A covariant tensor of the second rank type is defined as

T c d ≡ AcBd (47)

(see Einstein, 1916, p. 782)

A contravariant tensor of the second rank type is defined as

T c d ≡ AcBd (48)

(see Einstein, 1916, p. 782)

A mixed tensor of the second rank type is defined by Einstein as follows.

T c
d ≡ AcBd (49)

(see Einstein, 1916, p. 783)
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2.5.7. The metric tensor gµν and the inverse metric tensor gµν

General relativity is a theory of the geometrical properties of space-time too, while the metric tensor
gµν itself is of fundamental importance for general relativity. The metric tensor gµν is something
like the generalization of the Pythagorean theorem. Thus far, it does not appear to be necessary to
restrict the validity of the Pythagorean theorem only to certain situations. The question is justified why
the Riemannian geometry should be oppressed by the quadratic restriction. In this context, Finsler
geometry, named after Paul Finsler (1894 - 1970) who studied it in his doctoral thesis (see Finsler,
1918) in 1918, appears to be a kind of metric generalization of Riemannian geometry without the
quadratic restriction and justifies the attempt to systematize and to extend the possibilities of general
relativity.

Definition 2.12 (The metric tensor gµν and the inverse metric tensor gµν ). The distance between
any two points in a given space can be described geometrically by a generalized Pythagorean theorem,
the metric tensor gµν . Sharing Einstein’s point of view, it is in general

gµν ×gµν ≡ δ ν
ν ≡ D (50)

where D might denote the number of space-time dimensions. Vectors and scalars are invariant under
coordinate transformations. In point of fact, Einstein field equations (Einstein, 1915, 1916, 1917,
1935, Einstein and de Sitter, 1932) were initially formulated by Einstein himself in the context of a four-
dimensional theory even though Einstein field equations need not to break down under conditions of D
space-time dimensions (see Stephani, 2003). Nonetheless, based on Einstein’s statement (Einstein,
1916, p. 796), one gets (see also Einstein, 1923b, p. 91)

gµν ×gµν ≡ δ ν
ν ≡ D ≡+4 (51)

or
1

gµν ×gµν
≡ 1

4
(52)

where gµν is the matrix inverse of the metric tensor gµν . The inverse metric tensor or the metric
tensor, which is always symmetric, allow tensors to be transformed into each other and are used to
lower and raise indices. Einstein’s point of view is that

“... in the general theory of relativity ... must be ... the tensor gµν of the gravitational potential”
(Einstein, 1923b, p. 88)

Definition 2.13 (The metric tensor gµν decomposed). The fundamental difference between the metric
tensors of the four basic fields of nature, denoted as aµν , bµν , cµν and dµν , finds its complete expression
in equation 53 as

agµν + bgµν + cgµν + dgµν ≡ gµν (53)
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where agµν is the metric tensor of the ordinary matter, bgµν is the metric tensor of electromagnetism,
cgµν is the metric tensor of gravitational field, dgµν is the metric tensor of gravitational waves and
gµν is the metric tensor of Einstein’s general theory of relativity. We distinguish here between the four
basic field of nature, as follows. Details are illustrated by table 1.

Table 1. The metric field decomposed

Curvature
YES NO

Momentum YES (agµν ) (bgµν ) (Egµν )
NO (dgµν ) (dgµν ) (Egµν )

(Ggµν ) (Ggµν ) (gµν )

In this publication, let aµν , bµν , cµν and dµν denote the covariant second rank tensors of the
four basic fields of nature where aµν ≡ a× gµν is the stress-energy tensor of ordinary matter, bµν ≡
b×gµν is the stress-energy tensor of electro-magnetic field, cµν ≡ c×gµν and dµν ≡ d×gµν et cetera.
Multiplying the relationships of 1 by (R/D), where R is the Ricci scalar and D is spacetime dimension,
we obtain the Einstein field equations as outlined by table 2.

Table 2. Decomposed metric field and the Einstein field equations

Curvature
YES NO

Momentum YES (R/D)×(agµν ) (R/D)×(bgµν ) (R/D)×(Egµν )
NO (R/D)×(dgµν ) (R/D)×(dgµν ) (R/D)×(Egµν )

(R/D)×(Ggµν ) (R/D)×(Ggµν ) (R/D)×(gµν )

Definition 2.14 (The metric tensor gwgµν of gravitational waves). Let gµν denote the metric tensor
of Einstein’s general theory of relativity. Let gwgµν denote the metric tensor of gravitational waves of
Einstein’s general theory of relativity. Let gwgµν denote the metric tensor of anti-gravitational waves
of Einstein’s general theory of relativity. In general, we define

Egµν ≡ gwgµν + gwgµν (54)

Definition 2.15 (The metric tensor ηµν of special relativity). There is a fundamental difference
between Special and General Relativity regarding the metric tensor. Let ηµν denote the metric tensor
of Einstein’s special theory of relativity. In general, depending upon circumstances, it is

ηµν =


−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 +1

 (see Einstein, 1916, p. 778).
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Let ηµν denote the anti-metric tensor of Einstein’s special theory of relativity. Let gµν denote the
metric tensor of Einstein’s general theory of relativity. In general, it is (see equation 31)

gµν ≡ ηµν +ηµν (55)

There might exist circumstances where dgµν ≡ gwgµν ≡ ηµν . The n-th index relationship follows (see
equation 31) as

gklµν . . . ≡ ηklµν . . . +ηklµν . . . (56)

Definition 2.16 (Kronecker delta). The Kronecker delta (see Zehfuss, 1858), a notation invented
by Leopold Kronecker (1823-1891) in 1868 (see Kronecker, 1868) appears in many areas of physics,
mathematics, and engineering and is defined as

gµρ ×gνρ ≡ gµ
ν ≡ δ µ

ν (57)

Technically, the Kronecker delta (see Einstein, 1916, p. 787) itself is a mixed second-rank tensor. The
quantity

δ i
i ≡ δ 1

1 +δ 2
2 + ...+δ D

D ≡ D (58)

is an invariant.

Definition 2.17 (Index raising). According to Einstein (see also Einstein, 1916, p. 790), it is

Fµν ≡ gµαgνβ Fαβ (59)

and equally
Fµν ≡ gµαgνβ Fαβ (60)

In other (Kay, 1988) words (see Einstein, 1916, p. 790), an order-2 tensor, twice multiplied by the
contra-variant metric tensor and contracted (Einstein, 1916, p. 785) in different indices, raises each
index. It is

F( 1 3
µ c ) ≡ g(

1 2
µ ν )×g(

3 4
c d )×F( ν d

2 4 )
(61)

or more professionally

Fµ c ≡ gµν ×gcd ×Fν d (62)

Furthermore, it is (see Einstein, 1916, p. 790)

Aµν ≡ gµagνbAab (63)

CAUSATION ISSN: 1863-9542 https://www.doi.org/10.5281/zenodo.5717335 Volume 17, Issue 9, 1–157

https://portal.issn.org/resource/ISSN/1863-9542
https://www.doi.org/10.5281/zenodo.5717335


19

or

Aµν ≡ gµagνbAab (64)

et cetera. Following Einstein, it is gµν × gµν ≡ δ µ
µ (Einstein, 1916, p. 796). Furthermore, in

conjunction with another view (see equation 46, p. 15) of Einstein (see Einstein, 1916, p. 785), it is

F ≡ Fµν
µν ≡ Fµν ×Fµν (65)

2.6. Extended tensor algebra

In the following, for the sake of better understanding, we consider tensors of order two. As is
known, the components of a tensor of order two can be displayed in 4 × 4 matrix form.

2.6.1. Zero tensor

Definition 2.18 (Zero tensor).

The second-rank co-variant zero tensor is defined as

0µν ≡


000 001 002 003
010 011 012 013
020 021 022 023
030 031 032 033


︸                           ︷︷                           ︸

0µν tensor

(66)

This definition is also valid for contra-variant or mixed tensors too.

2.6.2. The negation of one

Definition 2.19 (The negation of one).

The negation of one, denoted as ¬(1), is defined by division as

¬(1) = 0
1

(67)

In general, it is

¬(1)×1 =+1−1 =
0
1
×1 =

1
1
×0 = 0 (68)

The negation of one, denoted as ¬, is defined by subtraction as

¬= 1− (69)

In general, it is
¬1 = 1−1 = 0 (70)
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2.6.3. Unity tensor

Definition 2.20 (Unity tensor).

The second-rank co-variant unity tensor is defined as

1µν ≡


100 101 102 103
110 111 112 113
120 121 122 123
130 131 132 133


︸                           ︷︷                           ︸

1µν tensor

(71)

This definition is also valid for contra-variant or mixed tensors too.

2.6.4. The negation of zero

Definition 2.21 (The negation of zero).

The negation of zero, denoted as ¬(0), is defined by division as

¬(0) = 0 =
1
0

(72)

In general, it is

¬(0)×0 = 0×0 =
1
0
×0 =

0
0
= 1 (73)

The negation of zero, denoted as ¬(0) or as 0, is defined by subtraction as

¬= 1− (74)

In general, it is
¬0 = 0 = 1−0 = 1 (75)

2.6.5. The tensor of the number 2

Definition 2.22 (The tensor of the number 2).

The second-rank co-variant tensor of the number 2 is defined as

2µν ≡


200 201 202 203
210 211 212 213
220 221 222 223
230 231 232 233


︸                           ︷︷                           ︸

2µν tensor

(76)

CAUSATION ISSN: 1863-9542 https://www.doi.org/10.5281/zenodo.5717335 Volume 17, Issue 9, 1–157

https://portal.issn.org/resource/ISSN/1863-9542
https://www.doi.org/10.5281/zenodo.5717335


21

This definition is also valid for contra-variant or mixed tensors an other numbers too. Whether it makes
sense to define numbers or scalars et cetera in the form of a tensor is worth being discussed. However,
such an approach has various advantages too.

2.6.6. Speed of the light tensor

Definition 2.23 (Speed of the light tensor).

Scientists and thinkers have been fascinated by the speed of light since ever. Aristotle (384-322
BCE) himself has been of the opinion that the speed of light was infinite. Let c denote the speed of the
light in vacuum. The second-rank co-variant tensor of speed of the light is defined as

cµν ≡


c00 c01 c02 c03
c10 c11 c12 c13
c20 c21 c22 c23
c30 c31 c32 c33


︸                          ︷︷                          ︸

cµν tensor

(77)

2.6.7. Archimedes’ constant tensor

Definition 2.24 (Archimedes’ constant tensor).

The second-rank co-variant tensor of the Archimedes of Syracuse (c. 287 – c. 212 B. C. E.) constant
π is defined as

πµν ≡


π00 π01 π02 π03
π10 π11 π12 π13
π20 π21 π22 π23
π30 π31 π32 π33


︸                            ︷︷                            ︸

πµν tensor

(78)

This definition is also valid for contra-variant or mixed tensors too.

2.6.8. Newton’s constant tensor

Definition 2.25 (Newton’s constant tensor).

The second-rank co-variant tensor of the Newton’s constant (see Newton, 1687, p. 198) is defined,
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as

γµν ≡


γ00 γ01 γ02 γ03
γ10 γ11 γ12 γ13
γ20 γ21 γ22 γ23
γ30 γ31 γ32 γ33


︸                           ︷︷                           ︸

γµν tensor

(79)

This definition is also valid for contra-variant or mixed tensors too.

2.6.9. Planck’s constant tensor

Definition 2.26 (Planck’s constant tensor).

Max Karl Ernst Ludwig Planck (1858-1947) quantized the energy REt as

RE t ≡ n×h×R f t (80)

where h is Planck’s constant (Planck, 1901), Rft is the frequency and n is an integer number. In the
following, Paul Adrien Maurice Dirac (1902-1984) defined the so-called Dirac’s constant ℏ (Dirac,
1926) as

h ≡ 2×π ×ℏ
≡ π × (2×ℏ)
≡ π × s

(81)

Plato (424/423 – 348/347 BCE), a Greek philosopher born in Athens, defined a circle as follows

“Rund ist doch das, dessen Enden überall gleich weit von der Mitte entfernt sind? ”

(see also Plato, 1910, p. 26)

Figure 3 might illustrate these basic relationships.
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2 𝜋 ℎ = 𝑙 = ℎ

h

s = 2✕h

A=(𝜋𝑠!)/4

Figure 3. Planck’s constant h, quantum loop and string theory.

A few thoughts - which are necessarily first thoughts - might consider circumstances where h can
be regarded as a loop, denoted as l, of the background-independent quantization of general relativity
by quantum loop (see Ashtekar and Bianchi, 2021, Ashtekar and Geroch, 1974, Rovelli, 2008) theory,
while s is treated as a string of string (see Bergshoeff et al., 1987, Green and Schwarz, 1982) theory.
However, “Strings and loop gravity may not necessarily be competing theories: there might be a sort of
complementarity, at least methodological, between the two. Indeed, the open problems of string theory
mostly concern its background-independent formulation, while loop quantum gravity is precisely a set
of techniques for dealing with background-independent theories. Perhaps the two approaches might
even, to some extent, converge. ”5 Under these conditions, it is

l ≡ π × s (82)

or
π ≡ l

s
(83)

Equation 83 implies due to our experience that π can hardly be treated as a constant. In this context,

5Rovelli C. Loop Quantum Gravity. Living Rev Relativ. 2008;11(1):5. doi: 10.12942/lrr-2008-5. Epub 2008 Jul 15. PMID:
28179822; PMCID: PMC5256093.
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the second-rank co-variant tensor of Planck’s constant h (Planck, 1901) is defined, as

hµν ≡


h00 h01 h02 h03
h10 h11 h12 h13
h20 h21 h22 h23
h30 h31 h32 h33


︸                           ︷︷                           ︸

hµν tensor

(84)

This definition is also valid for contra-variant or mixed tensors too.

2.6.10. Dirac’s constant tensor

Definition 2.27 (Dirac’s constant tensor).

The second-rank co-variant tensor of Dirac’s constant ℏ (Dirac, 1926) is defined, as

ℏµν ≡


ℏ00 ℏ01 ℏ02 ℏ03
ℏ10 ℏ11 ℏ12 ℏ13
ℏ20 ℏ21 ℏ22 ℏ23
ℏ30 ℏ31 ℏ32 ℏ33


︸                           ︷︷                           ︸

ℏµν tensor

(85)

This definition is also valid for contra-variant or mixed tensors too.

2.6.11. The commutative multiplication of tensors

Definition 2.28 (The commutative multiplication of tensors).

Multiplication is something which is equivalent to a repeated addition. Addition itself has the prop-
erties of associativity and commutativity. The question is justified whether there might exist something
like a commutative multiplication of tensors. Let Uµν denote a second-rank tensor. Let Wµν denote
another second-rank tensor. The commutative multiplication of two second-rank tensors is defined as
an entry wise multiplication of both tensors. It is,

U µν ∩W µν ≡ X µν (86)

where the sign ∩ denotes a commutative multiplication of tensors of the same rank. The commutative
multiplication of two tensors of the same rank is commutative, associative and distributive.

Example.
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Example of an entrywise multiplication of two tensors of the same rank.
u00 u01 u02 u03

u10 u11 u12 u13

u20 u21 u22 u23

u30 u31 u32 u33


︸                            ︷︷                            ︸

Uµν

∩


w00 w01 w02 w03

w10 w11 w12 w13

w20 w21 w22 w23

w30 w31 w32 w33


︸                               ︷︷                               ︸

W µν

=


(u00 ×w00) (u01 ×w01) (u02 ×w02) (u03 ×w03)

(u10 ×w10) (u11 ×w11) (u12 ×w12) (u13 ×w13)

(u20 ×w20) (u21 ×w21) (u22 ×w22) (u23 ×w23)

(u30 ×w30) (u31 ×w31) (u32 ×w32) (u33 ×w33)


︸                                                                          ︷︷                                                                          ︸

Xµν

(87)

Jacques Salomon Hadamard (1865-1963), a French mathematician, defined a similar operation of two
matrices of the same dimension i× j (see also Hadamard, 1893) which is commutative, associative
and distributive. The Hadamard product (also known as the Issai Schur (see also Schur, 1911, p. 14)
(1875 – 1941) product (see also Davis, 1962) or the point wise product is of use for a commutative
matrix multiplication and is defined something as

(u◦w)ij ≡ uijwij (88)

where the sign ◦ denotes an entry wise matrix multiplication.

2.6.12. The tensor double dot product on the closest indices

Definition 2.29 (The tensor double dot product on the closest indices).

Two tensors can be contracted over the first two indices of the second tensor or over the last two
indices of the first tensor (double contraction). As is known, a double dot product between two tensors
of orders m and n will result in a tensor of order (m + n - 4). Let uµν and wµν denote two second-rank
tensors. Let : denote the contraction of two tensors uµν and wµν on the closest indices, then

u : w = uµνwνµ (89)

2.6.13. The tensor double dot product on the non-closest indices

Definition 2.30 (The tensor double dot product on the non-closest indices).

Let uµν and wµν denote two second-rank tensors. Let : denote the contraction of two tensors uµν

and wµν on the non-closest indices, then

u:w = uµνwµν (90)

Especially under conditions where both second-rank tensors are symmetric, both definitions of the
tensor double dot product coincide but not necessarily in general.
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2.6.14. The division of tensors

Definition 2.31 (The division of tensors).

Division is something which is related to multiplication. Let aµν denote a second-rank tensor. Let
bµν denote another second-rank tensor. Let Uµν denote another second-rank co-variant tensor. In
general, let it be that

aµν +bµν ≡U µν (91)

The probability of a tensor aµν , denoted as p(aµν ), is calculated entry wise as follows.

p(aµν)≡


a00 a01 a02 a03

a10 a11 a12 a13

a20 a21 a22 a23

a30 a31 a32 a33

/


U00 U01 U02 U03

U10 U11 U12 U13

U20 U21 U22 U23

U30 U31 U32 U33

≡



a00

U00

a01

U01

a02

U02

a03

U03

a10

U10

a11

U11

a12

U12

a13

U13

a20

U20

a21

U21

a22

U22

a23

U23

a30

U30

a31

U31

a32

U32

a33

U33


(92)

2.6.15. The exponentiation of a tensor to the power n

Definition 2.32 (The exponentiation of a tensor to the power n).

A second-rank co-variant tensor to the power n, denoted by nUµν , is determined by the fact that
every single component of such a tensor is multiplied by itself n-times. In general, it is

nU µν =



(u00 ×u00 × ...)︸                ︷︷                ︸
n−times

(u01 ×u01 × ...)︸                ︷︷                ︸
n−times

(u02 ×u02 × ...)︸                ︷︷                ︸
n−times

(u03 ×u03 × ...)︸                ︷︷                ︸
n−times

(u10 ×u10 × ...)︸                ︷︷                ︸
n−times

(u11 ×u11 × ...)︸                ︷︷                ︸
n−times

(u12 ×u12 × ...)︸                ︷︷                ︸
n−times

(u13 ×u13 × ...)︸                ︷︷                ︸
n−times

(u20 ×u20 × ...)︸                ︷︷                ︸
n−times

(u21 ×u21 × ...)︸                ︷︷                ︸
n−times

(u22 ×u22 × ...)︸                ︷︷                ︸
n−times

(u23 ×u23 × ...)︸                ︷︷                ︸
n−times

(u30 ×u30 × ...)︸                ︷︷                ︸
n−times

(u31 ×u31 × ...)︸                ︷︷                ︸
n−times

(u32 ×u32 × ...)︸                ︷︷                ︸
n−times

(u33 ×u33 × ...)︸                ︷︷                ︸
n−times


︸                                                                                                  ︷︷                                                                                                  ︸

nUµν

=


(u00)

n (u01)
n (u02)

n (u03)
n

(u10)
n (u11)

n (u12)
n (u13)

n

(u20)
n (u21)

n (u22)
n (u23)

n

(u30)
n (u31)

n (u32)
n (u33)

n


︸                                              ︷︷                                              ︸

nUµν

(93)
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This definition is also valid for contra-variant or mixed tensors too.

2.6.16. The exponentiation of a tensor to the power 1/n

Definition 2.33 (The exponentiation of a tensor to the power 1/n).

A second-rank co-variant tensor to the power n, denoted by nU µν , is determined by the fact that
every single component of such a tensor is multiplied by itself (1/n)-times. In general, it is

1/nU µν =


(u00)

1/n (u01)
1/n (u02)

1/n (u03)
1/n

(u10)
1/n (u11)

1/n (u12)
1/n (u13)

1/n

(u20)
1/n (u21)

1/n (u22)
1/n (u23)

1/n

(u30)
1/n (u31)

1/n (u32)
1/n (u33)

1/n


︸                                                     ︷︷                                                     ︸

1/nUµν

(94)

This definition is also valid for contra-variant or mixed tensors too.

2.6.17. The expectation value of a co-variant second rank tensor

Let E(RUµν ) denote the expectation value of a co-variant second rank tensor RUµν . Let p(RUµν )
denote the probability of a tensor RUµν . In general, we define

E
(

RU µν

)
≡ p

(
RU µν

)
∩ RU µν (95)

and equally

2E
(

RU µν

)
≡ E

(
RU µν

)
∩E

(
RU µν

)
≡ p

(
RU µν

)
∩ p
(

RU µν

)
∩ RU µν ∩ RU µν (96)

Let E(RUklµν . . . ) denote the expectation value of a co-variant n-index rank tensor RUklµν . . . . Let
p(RUklµν . . . ) denote the probability of a co-variant n-index rank tensor RUklµν . . . . In general, we define
expectation value of a co-variant n-index rank tensor

E
(

RUklµν . . .
)
≡ p

(
RUklµν . . .

)
∩ RUklµν . . . (97)

It is equally true that

2E
(

RUklµν . . .
)
≡E

(
RUklµν . . .

)
∩E
(

RUklµν . . .
)
≡ p

(
RUklµν . . .

)
∩ p
(

RUklµν . . .
)
∩RUklµν . . . ∩RUklµν . . .

(98)
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2.6.18. The expectation value of a second rank anti tensor

Let E(RUµν ) denote the expectation value of the covariant second rank anti tensor RUµν . Let
p(RUµν ) denote the probability of an anti tensor RUµν . In general, we define

E
(

RU µν

)
≡p
(

RU µν

)
∩U µν

≡
(
1µν − p

(
RU µν

))
∩ RU µν

(99)

Euclid’s theorem is a fundamental statement of geometry and has been proved by Euclid in his famous
work Elements. According to Euclid’s theorem, it is

RU µν ≡ E
(

RU µν

)
+E

(
RU µν

)
(100)

Theorem 2.1. It is

RU µν ≡ E
(

RU µν

)
+E

(
RU µν

)
(101)

Proof. According to Euclid’s theorem, it is

RU t ≡ E (RU t)+E (RU t) (102)

Multiply RUt by the metric tensor gµν or just define

RU t = RU µν (103)

Then the conclusion is true that

RU µν ≡ E
(

RU µν

)
+E

(
RU µν

)
(104)

□

♡

2.6.19. The expectation value of a second rank tensor raised to rower 2

Let E(2
RUµν ) denote the expectation value of the covariant second rank tensor RUµν raised to the

power 2. Let p(RUµν ) denote the probability of a tensor RUµν . In general, we define

E
(

2
RU µν

)
≡p
(

RU µν

)
∩ RU µν ∩ RU µν

≡p
(

RU µν

)
∩
(

2
RU µν

) (105)

Let E(2
RUklµν . . . ) denote the expectation value of a co-variant n-index rank tensor 2

RUklµν . . . raised
to rower 2. Let p(RUklµν . . . ) denote the probability of a co-variant n-index rank tensor RUklµν . . . . In
general, we define the expectation value of a co-variant n-index rank tensor raised to rower 2 as

E
(

2
RUklµν . . .

)
≡ p

(
RUklµν . . .

)
∩ RUklµν . . . ∩ RUklµν . . . (106)
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2.6.20. The variance of a tensor

Definition 2.34 (The variance of a tensor).

Let RUµν denote a second-rank co-variant tensor. Let p(RUµν ) denote the probability of a tensor

RUµν . The variance of a tensor RUµν , denoted as 2σ
(

RU µν

)
, is defined as

2
σ
(

RU µν

)
≡E
(

2
RU µν

)
− 2 (E (RU µν

))
≡
(

p
(

RU µν

)
∩ RU µν ∩ RU µν

)
−
(

p
(

RU µν

)
∩ RU µν ∩ p

(
RU µν

)
∩ RU µν

)
≡RU µν ∩ RU µν ∩ p

(
RU µν

)
∩
(
1µν − p

(
RU µν

)) (107)

From equation 107 follows that

RU µν ∩ RU µν ≡
2σ
(

RU µν

)
p
(

RU µν

)
∩
(
1µν − p

(
RU µν

)) (108)

and that

RU µν ≡
σ
(

RU µν

)
1/2
(

p
(

RU µν

)
∩
(
1µν − p

(
RU µν

))) (109)

The standard deviation of a second-rank tensor, denoted as σ
(

RU µν

)
, would follow as

σ
(

RU µν

)
≡1/2 (

RU µν ∩ RU µν ∩ p
(

RU µν

)
∩
((

1µν − p
(

RU µν

))))
≡ 2
√(

RU µν ∩ RU µν ∩ p
(

RU µν

)
∩
((

1µν − p
(

RU µν

)))) (110)

Let RUklµν . . . denote a co-variant n-index rank tensor. Let p(RUklklµν . . . . . . ) denote the probability of
a co-variant n-index rank tensor RUklµν . . . . The variance of a co-variant n-index rank tensor RUklµν . . . ,
denoted as 2σ

(
RUklµν . . .

)
, is defined as

2
σ
(

RUklµν . . .
)

≡E
(

2
RUklµν . . .

)
− 2 (E (RUklµν . . .

))
≡
(

p
(

RUklµν . . .
)
∩ RUklµν . . . ∩ RUklµν . . .

)
−
(

p
(

RUklµν . . .
)
∩ RUklµν . . . ∩ p

(
RUklµν . . .

)
∩ RUklµν . . .

)
≡RUklµν . . . ∩ RUklµν . . . ∩ p

(
RUklµν . . .

)
∩
(
1klµν . . . − p

(
RUklµν . . .

))
(111)

From equation 111 follows that

RUklµν . . . ∩ RUklµν . . . ≡
2σ
(

RUklµν . . .
)

p
(

RUklµν . . .
)
∩
(
1klµν . . . − p

(
RUklµν . . .

)) (112)

and that

RUklµν . . . ≡
σ
(

RUklµν . . .
)

1/2
(

p
(

RUklµν . . .
)
∩
(
1klµν . . . − p

(
RUklµν . . .

))) (113)
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The standard deviation of a second-rank tensor, denoted as σ
(

RUklµν . . .
)
, would follow as

σ
(

RUklµν . . .
)

≡1/2 (
RUklµν . . . ∩ RUklµν . . . ∩ p

(
RUklµν . . .

)
∩
((

1klµν . . . − p
(

RUklµν . . .
))))

≡ 2
√(

RUklµν . . . ∩ RUklµν . . . ∩ p
(

RUklµν . . .
)
∩
((

1klµν . . . − p
(

RUklµν . . .
)))) (114)

2.6.21. The co-variance of two tensors

Definition 2.35 (The co-variance of two tensors).

Let RUµν denote a second-rank co-variant tensor. Let p(RUµν ) denote the probability of a tensor

RUµν . According to equation 92, the probability of a tensor RUµν is defined as p(RUµν ). Let RWµν

denote a second-rank co-variant tensor. Let p(RWµν ) denote the probability of a tensor RWµν (see
equation 92). Let p(RUµν , RWµν ) denote the probability of a joint tensor of the two tensors RUµν

and RWµν .The co-variance of the two tensors RUµν and RWµν , denoted as σ
(

RU µν . . . ,RW µν . . .
)
, is

defined as

σ
(

RU µν ,RW µν

)
≡E
(

RU µν ,RW µν

)
−
(
E
(

RU µν

)
×E

(
RW µν

))
≡
(

p
(

RU µν ,RW µν

)
∩ RU µν ∩ RW µν

)
−
(

p
(

RU µν

)
∩ RU µν ∩ p

(
RW µν

)
∩ RW µν

)
≡RU µν ∩ RW µν ∩

(
p
(

RU µν ,RW µν

)
−
(

p
(

RU µν

)
× p

(
RW µν

)))
(115)

From equation 115 follows that

RU µν ∩ RW µν ≡
σ
(

RU µν ,RW µν

)(
p
(

RU µν ,RW µν

)
−
(

p
(

RU µν

)
× p

(
RW µν

))) (116)

Let RUklµν . . . denote a co-variant n-index rank tensor. Furthermore, let p(RUklµν . . . ) denote the prob-
ability of a co-variant n-index rank tensor RUklµν . . . . According to equation 92, the probability of a
co-variant n-index rank tensor RUklµν . . . is defined as p(RUklµν . . . ). Let RWklµν . . . denote a co-variant
n-index rank tensor. Let p(RWklµν . . . ) denote the probability of this co-variant n-index rank tensor

RWklµν . . . (see equation 92). Let p(RUklµν . . . , RWklµν . . . ) denote the probability of a joint tensor of
the two co-variant n-index rank tensors RUklµν . . . and RWklµν . . . .The co-variance of the two co-variant
n-index rank tensor RUklµν . . . and RWklµν . . . , denoted as σ

(
RUklµν . . . ,RW klµν . . .

)
, is defined as

σ
(

RUklµν . . . ,RW klµν . . .
)

≡E
(

RUklµν . . . ,RW klµν . . .
)
−
(
E
(

RUklµν . . .
)
×E

(
RW klµν . . .

))
≡
(

p
(

RUklµν . . . ,RW klµν . . .
)
∩ RUklµν . . . ∩ RW klµν . . .

)
−
(

p
(

RUklµν . . .
)
∩ RUklµν . . . ∩ p

(
RW klµν . . .

)
∩ RW klµν . . .

)
≡RUklµν . . . ∩ RW klµν . . . ∩

(
p
(

RUklµν . . . ,RW klµν . . .
)
−
(

p
(

RUklµν . . .
)
× p

(
RW klµν . . .

)))
(117)
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From equation 117 follows that

RUklµν . . . ∩ RW klµν . . . ≡
σ
(

RUklµν . . . ,RW klµν . . .
)(

p
(

RUklµν . . . ,RW klµν . . .
)
−
(

p
(

RUklµν . . .
)
× p

(
RW klµν . . .

))) (118)
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2.7. Einstein’s theory of special relativity

Definition 2.36 (Energy REt and Matter RMt).

The equivalence of matter (RMt) and energy (REt) lies at the core of today’s physics and has been
described by Einstein as follows:

“Gibt ein Körper die Energie L in Form von Strahlung ab, so verkleinert sich seine Masse um L/V2

... Die Masse eines Körpers ist ein Maß für dessen Energieinhalt ”

(Einstein, 1905c)

In general it is

RMt ≡ RE t

c2 (119)

(Einstein, 1905c)

where RMt is the relativistic(Tolman, 1912) matter or matter as given from the point of view of a
stationary observer R, REt is the total or relativistic energy of a system, of an entity et cetera, as
associated with matter, c is the speed of the light in vacuum and t is the Bernoulli trial or (period
of) (space-) time. In other words, Einstein is demanding the equivalence of matter and energy as
the most important upshot of his special theory of relativity. “Eines der wichtigsten Resultate der
Relativitätstheorie ist die Erkenntnis, daß jegliche Energie E eine ihr proportionale Trägheit (E/c²)
besitzt”. (Einstein, 1912b) However, at least one main theoretical questions is surrounding Einstein’s
equation 119. How we ought to understand the notion of mass and matter, and that matter and energy
are in some sense equivalent, may be the focus of following lines. Although it is far less common
today, one still should refer to Einstein’s understanding of matter and gravitational field again. Einstein
is writing:

“Wir unterscheiden im folgenden zwischen ‘Gravitationsfeld’und ‘Materie’, in dem Sinne, daß

alles außer dem Gravitationsfeld als ‘Materie’bezeichnet wird, also nicht nur

die ‘Materie’im üblichen Sinne, sondern auch das elektromagnetische Feld. ”

(Einstein, 1916, p. 802/803)

Firstly. Everything but the gravitational field is matter, there is no third between matter and gravita-
tional field, a third is not given, tertium non datur. Secondly. Matter, from the point of view of a

CAUSATION ISSN: 1863-9542 https://www.doi.org/10.5281/zenodo.5717335 Volume 17, Issue 9, 1–157

https://portal.issn.org/resource/ISSN/1863-9542
https://www.doi.org/10.5281/zenodo.5717335


33

stationary observer R, includes not only matter in the ordinary sense, but the electromagnetic field as
well (Einstein, 1916, p. 802/803). Finally, one consequential relationship is necessary to mention. “Da
Masse und Energie nach den Ergebnissen der speziellen Relativitätstheorie das Gleiche sind und die
Energie formal durch den symmetrischen Energietensor (Tµv) beschrieben wird, so besagt dies, daß
das G-Geld [gravitational field, author] durch den Energietensor der Materie bedingt und bestimmt ist
”(Einstein, 1918b). Matter or energy is the cause of the gravitational field. However, is this relationship
valid vice versa to?

Definition 2.37 (Time Rtt and gravitational field Rgt).

The fundamental relationship between gravitational field Rgt from the point of view of the sta-
tionary observer R and time Rtt from the point of view of the same stationary observer R is deter-
mined(Barukčić, 2011, 2013, 2016b, Barukčić, 2016b) by the equation

Rgt ≡ Rt t

c2 (120)

and from the point of view of a co-moving observer 0 by the equation

0gt ≡ 0t t

c2 (121)

Next we define(Barukčić, 2011, Barukčić, 2016b) the following mathematical identities related to time,
to which a concrete physical meaning would have to be attached in the following of further develop-
ment.

Wt t ≡ v× c×Rgt (122)

In general, it is
Wt t

2 ≡ (v× c×Rgt)
2 ≡ Rt t

2 − 0t t
2 (123)

and
Wgt ≡ Wt t

c2 (124)

As such (see equation 123), it is a logical step to consider that

Rgt ≡ 0gt +Wgt (125)

I should like to take this opportunity to express once again the possibility that Wgt itself might represent
something similar to the gravitational waves. Let the mathematical identity Ktt be defined as follows.

Kt t ≡ Wt t ×Wt t

Rt t
≡ Wt t

Rt t
×Wt t ≡

(v× c×Rgt)
2

c2 ×Rgt
≡ v2 ×Rgt (126)

The notion Ktt might indicate the time as determined by the relativistic kinetic energy KEt. Let the
mathematical identity Ptt be defined as follows.

Pt t ≡ 0t t × 0t t

Rt t
≡ 0t t

Rt t
× 0t t ≡

√1− v2

c2

× 0t t (127)
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The notion Ptt might indicate the time as determined by the relativistic potential energy PEt. In general,
it is necessary to consider that,

Rt t ≡ Pt t +Kt t (128)

Furthermore, the following identities are defined.

Kgt ≡ Kt t

c2 (129)

Pgt ≡ Pt t

c2 (130)

The identity Kredtt is defined as
Kredt t ≡ v×Rgt (131)

Definition 2.38 (Space RSt).

We define the general relationship

RSt ≡ 0St + 0St ≡ RU t × c2 (132)

In case, that there are not justified reasons to doubt the correctness of Einstein’s demand that all but
matter is a gravitational field(Einstein, 1916, p. 802/803), we define

RU t ≡ RMt +Rgt ≡ RSt

c2 (133)

where RUt is the mathematical identity of matter RMt and gravitational field Rgt, RSt is something
like space and c is the speed of the light in vacuum. The following figure might illustrate this basic
relationship from another point of view.

We multiply equation 133 by the term

(√
1− v2

c2

)
where v is the relative velocity between a

co-moving observer 0 and a stationary observer R. It isRU t ×

√1− v2

c2

≡

RMt ×

√1− v2

c2

+

Rgt ×

√1− v2

c2

 (134)

We define 0Ut as

0U t ≡ RU t ×

√1− v2

c2

 (135)

According to Einstein, the rest-mass 0mt is given as

0mt ≡ RMt ×

√1− v2

c2

 (136)
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We define 0gt as

0gt ≡ Rgt ×

√1− v2

c2

 (137)

Equation 134 as seen from the point of view of a co-moving observer 0 becomes

0U t ≡ 0mt + 0gt (138)

where 0mt indicates the rest mass as determined by the co-moving observer, 0gt is the gravitational
field as determined by the co-moving observer and 0Ut is the unity and the ’struggle’ of both.
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2.8. Einstein’s general theory or relativity

Definition 2.39 (The Einstein field equations). The Einstein field equations (Einstein, 1915, 1916,
1917, 1935, Einstein and de Sitter, 1932) describe the relationship between the presence of matter

(represented by the stress-energy tensor
((

4×2×π × γ

c4

)
×T µν

)
in a given region of spacetime

and the curvature in that region by the equation

Rµν −
((

R
2

)
×gµν

)
+
(
Λ×gµν

)
≡
(

4×2×π × γ

c4

)
×T µν

≡ Eµν

(139)

where Rµν is the Ricci tensor (Ricci and Levi-Civita, 1900) of ‘Einstein’s general theory of rel-
ativity’ (Einstein, 1916), R is the Ricci scalar, the trace of the Ricci curvature tensor with respect
to the metric and equally the simplest curvature invariant of a Riemannian manifold, Λ is the Ein-
stein’s cosmological (Barukčić, 2015a, Einstein, 1917) constant, Λ is the “anti cosmological con-
stant” (Barukčić, 2015a), gµν is the metric tensor of Einstein’s general theory of relativity, Gµν is
Einstein’s curvature tensor, Gµν is the “anti tensor” (Barukčić, 2016b) of Einstein’s curvature tensor,
Eµν is the stress-energy tensor of energy, Eµν is the tensor of non-energy, the anti-tensor of the stress-
energy tensor of energy, aµν , bµν , cµν and dµν denote the four basic fields of nature were aµν is the
stress-energy tensor of ordinary matter, bµν is the stress-energy tensor of the electromagnetic field, c is
the speed of the light in vacuum, γ is Newton’s gravitational “constant” (Barukčić, 2016b, Barukčić,
2015a,b, 2016a), π is Archimedes constant pi.

Table 3 may provide a more detailed and preliminary overview of the definitions (Barukčić,
2016a,b) before.

Curvature
YES NO

Momentum YES aµν bµν ≡ (cµν + Λ× gµν )
8×π × γ

c4 ×D
× gµν ≡

(
R
D
− R

2
+Λ

)
×gµν

NO cµν ≡ (bµν - Λ× gµν ) dµν ≡ (
R
2
× gµν - bµν )

(
R
2
−Λ

)
×gµν

Gµν ≡
(

R
D
− R

2

)
×gµν

R
2
× gµν Rµν ≡ R

D
×gµν

Table 3. Wherever our eyes reaches, dust and stones and nothing, who knows, who owns.

From Einstein’s specific point of view, two wings are necessary to get to the core of the relationship
between matter and gravitational field, just as two wings are essential for a bird that conquers the air.
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We are quite privileged to consider in detail that(
R
D
×gµν

)
−
((

R
2

)
×gµν

)
+
(
Λ×gµν

)
︸                                                       ︷︷                                                       ︸

the le f t−hand side

≡
(

4×2×π × γ ×T
c4 ×D

)
×gµν︸                                 ︷︷                                 ︸

the right−hand side

(140)

while Rµν ≡ aµν +bµν + cµν +dµν and the

“... one wing ... is made of fine marble (left side of the equation) ...

the other wing ... is built of low-grade wood (right side of equation).

The phenomenological representation of matter is, in fact, only a crude substitute for a
representation which would do justice to all known properties of matter. ”

(Einstein, 1936, p. 370)

Taken together, the nth index, D-dimensional Einstein’s gravitational field equations (Barukčić,
2020c) follow as

(
R
D
×gµνπρ . . .

)
−
((

R
2

)
×gµνπρ . . .

)
+
(
Λ×gµνπρ . . .

)
︸                                                                            ︷︷                                                                            ︸

(local) space−time curvature

≡
(

4×2×π × γ ×T
c4 ×D

)
×gµνπρ . . .︸                                        ︷︷                                        ︸

(local) energy and momentum
(141)

In general, the metric field (responsible for gravitational-inertial properties of bodies) on the left-hand
side of Einstein’s field equations, is completely determined by a tensorial but non-geometrical phe-
nomenological representation of matter on the right-hand side. Einstein himself had a very differenti-
ated view of these two sides of his field equations. In point of fact, the left part of the Einstein field
equations (the Einstein tensor) is taken by Einstein as fine marble because of its geometrical nature,
whereas the right side of the equations is lacking similar geometric significance and was degraded by
Einstein himself to low-grade wood, the need for geometrical unification follows at least from such an
asymmetrical state of affairs.

“The mind striving after unification of the theory cannot be satisfied that two fields should exist
which, by their nature, are quite independent. A mathematically unified field theory is sought in

which the gravitational field and the electromagnetic field are interpreted only as different
components or manifestations of the same uniform field ... The gravitational theory ... should be

generalized so that it includes the laws of the electromagnetic field.

(Einstein, 1923a, p. 489)
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An incorporation of electromagnetism and of other fields into spacetime geometry is desirable. In point
of fact, a striving toward unification and simplification of the premises and of Einstein’s general theory
of relativity as a whole is necessary.

Definition 2.40 (The stress-energy tensor of the electromagnetic field). A completely geometrized,
co-variant stress-energy tensor of the electromagnetic field expressed under conditions of D = 4 space-
time dimensions has already been published (see theorem 3.1, equation 80; Barukčić, 2020a, p. 157).
The trace-less, symmetric stress-energy tensor of the (source-free) electromagnetic field, denoted by
bµν , is expressed more compactly in a coordinate-independent way as

bµν ≡
(

1
4×π

×
((

Fµ c ×Fν
c)+(1

4
×gµν ×Fde ×Fde

)))
(142)

(see Lehmkuhl, 2011, p. 13) or (depending upon metric signature) as

bµν ≡
(

1
4×π

×
((

Fµ c ×Fν d ×gcd
)
−
(

1
4
×gµν ×Fde ×Fde

)))
(143)

(see Hughston and Tod, 1990, p. 38).

Definition 2.41 (The stress-energy tensor of ordinary matter aµν ). Howard Georgi and Sheldon
Glashow (Georgi and Glashow, 1974) proposed in 1974 the first Grand Unified Theory (Buras et al.,
1978). Grand Unified Theory (GUT) models predict the unification of the electromagnetic, the weak,
and the strong forces into a single force. However, it appears to be more appropriate to unify the
strong nuclear force and the weak nuclear force into an ordinary force. The matter as associated with
an ordinary force can be calculated very precisely. Under conditions of Einstein’s general (Einstein,
1915, 1916, 1917, 1935, Einstein and de Sitter, 1932) theory of relativity, the stress-energy tensor of
ordinary matter aµν which is expected to unify the strong nuclear force and the weak nuclear force
into an ordinary force is defined / derived / determined as

aµν ≡
((

4×2×π × γ

c4

)
×T µν

)
−bµν

≡ Gµν +
(
Λ×gµν

)
−bµν

≡ Rµν −
(
R×gµν

)
+
(
Λ×gµν

)
+dµν

≡ (E −b)×gµν

≡ (G− c)×gµν

≡ a×gµν

(144)

or

aµν ≡ Rµν −
((

R
2

)
×gµν

)
+
(
Λ×gµν

)
−(

1
4×π

×
((

Fµ c ×Fν d ×gcd
)
+

(
1
4
×gµν ×Fde ×Fde

)))
(145)
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From our present point of view we can expect that there are conditions where

aµν ≡
((

4×2×π × γ

c4

)
×T µν

)
−bµν

≡
((

R
D
− R

2
+Λ

)
−
(
(4+D)×F1

4×π ×4×D

))
×gµν

(146)

where F1 is Lorenz invariant.

Definition 2.42 (The 4-index D dimensional a klµν ). The 4-index D dimensional a klµν is defined as:

aklµν ≡ (E −b)×gklµν

≡ (G− c)×gklµν

≡ a×gklµν

(147)

Definition 2.43 (The n-index D dimensional a klµν . . . ). The n-index D dimensional a klµν . . . is defined
as:

aklµν . . . ≡ (E −b)×gklµν . . .

≡ (G− c)×gklµν . . .

≡ a×gklµν . . .

(148)

Definition 2.44 (Ricci scalar R). Under conditions of Einstein’s general (Einstein, 1915, 1916, 1917,
1935, Einstein and de Sitter, 1932) theory of relativity, the Ricci scalar curvature R as the trace of the
Ricci curvature tensor Rµν with respect to the metric is determined at each point in space-time by
lamda Λ and anti-lamda (Barukčić, 2015a) Λ as

R ≡ gµν ×Rµν ≡ (Λ)+(Λ)≡ D×S (149)

where D is the number of space-time dimension and S ≡
(

R
D

)
(see theorem 3.16, equation 369 ). A

Ricci scalar curvature R which is positive at a certain point indicates that the volume of a small ball
about the point has smaller volume than a ball of the same radius in Euclidean space. In other words,
the density of space varies. In contrast to this, a Ricci scalar curvature R which is negative at a certain
point indicates that the volume of a small ball is larger than it would be in Euclidean space. In general,
it is (see Barukčić, 2015a)

R×gµν ≡
(
Λ×gµν

)
+
(
Λ×gµν

)
(150)

or
R ≡ (Λ)+(Λ) (151)

The cosmological constant can also be written algebraically as part of the stress–energy tensor, a
second order tensor as the source of gravity (energy density).

Definition 2.45 (Ricci tensor Rµν ). The Ricci tensor Rµν is a geometric object which has been de-
veloped by Gregorio Ricci-Curbastro (1853 – 1925) (Ricci and Levi-Civita, 1900) and is able to
measure of the degree to which a certain geometry of a given metric differs from that of ordinary Eu-
clidean space. In this publication, let aµν , bµν , cµν and dµν denote the covariant second rank tensors
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of the four basic fields of nature were aµν ≡ fa2 × gµν is the stress-energy tensor of ordinary matter,
bµν ≡ fb2×gµν is the stress-energy tensor of the electromagnetic field, cµν ≡ c2×gµν is the tensor of
the gravitational field and dµν ≡ fd2 ×gµν is the tensor of gravitational waves. The Ricci tensor Rµν

of ‘Einstein’s general theory of relativity’ (Einstein, 1916) is determined by the stress-energy tensor((
4×2×π × γ

c4

)
×T µν

)
and the anti stress-energy tensor

(((
R
2

)
×gµν

)
−
(
Λ×gµν

))
as

Rµν ≡
((

4×2×π × γ

c4

)
×T µν

)
︸                                 ︷︷                                 ︸

stress−energy tensor

+

(((
R
2

)
×gµν

)
−
(
Λ×gµν

))
︸                                       ︷︷                                       ︸

anti stress−energy tensor

≡ aµν +bµν + cµν +dµν

≡ (S)×gµν

≡
(

R
D

)
×gµν

(152)

while S might denote a scalar.

Definition 2.46 (Laue’s scalar T). Max von Laue (1879-1960) proposed the meanwhile so called Laue
scalar (Laue, 1911) (criticised by Einstein (Einstein and Grossmann, 1913) ) as the contraction of
the the stress–energy momentum tensor Tµν denoted as T and written without subscripts or arguments.
Under conditions of Einstein’s general (Einstein, 1915, 1916, 1917, 1935, Einstein and de Sitter,
1932) theory of relativity, it is

T ≡ gµν ×T µν (153)

Taken Einstein seriously, Tµν “denotes the co-variant energy tensor of matter” (see Einstein,
1923b, p. 88). In other words, “Considered phenomenologically, this energy tensor is composed of
that of the electromagnetic field and of matter in the narrower sense.” (see Einstein, 1923b, p. 93)

Definition 2.47 (The scalar E). In general, we define the scalar E as

E ≡ dE t
2 ≡

(
8×π × γ

c4 ×D

)
×T

≡
(

8×π × γ ×T
c4 ×D

)
≡
(

2×π ×4× γ ×T
c4 ×D

)
≡
(

h×4× γ ×T
ℏ× c4 ×D

)
≡
(

R
D

)
−
(

R
2

)
+Λ

(154)

where D is the space-time dimension, where c denote the speed of the light in vacuum, γ denote New-
ton’s gravitational “constant” (Barukčić, 2016b, Barukčić, 2015a,b, 2016a), π is the number pi and
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T denote Laue’s scalar. The scalar E might correspond even to the total energy density squared of
a (relativistic or quantum) system, and has the potential as such to bridge the gap between relativity
theory and quantum mechanics under circumstances where the same is related or even identical with
the Hamiltonian operator (squared).

Definition 2.48 (Stress-energy and momentum tensor Eµν ). The tensor of stress-energy-momentum
denoted as Eµν is determined in detail as follows.

Eµν ≡
(

4×2×π × γ

c4 ×D

)
×T µν

≡ Rµν −
((

R
2

)
×gµν

)
+
(
Λ×gµν

)
≡
(

S−
(

R
2

)
+Λ

)
×gµν

≡ (G+Λ)×gµν

≡ Gµν +
(
Λ×gµν

)
≡ Rµν −Eµν

≡ E ×gµν

(155)

while E might denote the scalar of, even something like ‘energy density’. According to Einstein, it
is necessary to consider that

“... a tensor, Tµν , of the second rank ... includes in itself

the energy density of the electromagnetic field

and of

ponderable matter;

we shall denote this in the following as the ‘energy tensor of matter”’

(Einstein, 1923b, pp. 87/88)
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Definition 2.49 (The scalar G). In general, we define the scalar G (Barukčić, 2020a) as

G ≡ dGt
2 ≡

((
R
D

)
− R

2

)
≡
(

E + Rt t −
R
2

)
≡
(

E +

(
R
2
−Λ

)
− R

2

)
≡ E −Λ

(156)

Definition 2.50 (Einstein’s curvature tensor Gµν ). Under conditions of Einstein’s general (Einstein,
1915, 1916, 1917, 1935, Einstein and de Sitter, 1932) theory of relativity, the tensor of curvature
denoted by Gµν is defined/derived/determined (see Barukčić, 2020a) as follows:

Gµν ≡ Rµν −
((

R
2

)
×gµν

)
≡
(

R
D

)
×gµν −

((
R
2

)
×gµν

)
≡
((

R
D

)
− R

2

)
×gµν

≡ aµν + cµν

≡ G×gµν

≡
(

R
D

)
×Ggµν

(157)

Definition 2.51 (The scalar G). In general, we define the scalar G (see Barukčić, 2020a) as

G ≡ dGt
2 ≡

((
R
D

)
−G

)
≡
(

R
2

) (158)

Definition 2.52 (The scalar E ). In general, we define the scalar E as (see Barukčić, 2020a)

E ≡ dE t
2 ≡

((
R
D

)
−E

)
≡
(

R
2
−Λ

) (159)

Remark 2.1. In the following of research, it is appropriate to prove the relationship between (1/X) and
the complex conjugate of the wave function Ψ* or the identity (1/X)≡ Ψ*.
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Definition 2.53 (The anti Einstein’s curvature tensor or the tensor of non-curvature Gµν ). Under
conditions of Einstein’s general (Einstein, 1915, 1916, 1917, 1935, Einstein and de Sitter, 1932)
theory of relativity, the tensor of non-curvature is defined/derived/determined (Barukčić, 2020a) as
follows:

Gµν ≡ Rµν −Gµν

≡ Rµν −
(

Rµν −
((

R
2

)
×gµν

))
≡
(

R
2

)
×gµν

≡ bµν +dµν

≡ G×gµν

(160)

Definition 2.54 (The 4-index D dimensional stress-energy and momentum tensor Eklµν ). The 4-
index D dimensional stress-energy-momentum tenosr denoted as Eklµν is determined in detail as

Eklµν ≡
(

8×π × γ ×T
c4 ×D

)
×gklµν

≡ Rklµν −
((

R
2

)
×gklµν

)
+
(
Λ×gklµν

)
≡ Gklµν +

(
Λ×gklµν

)
≡ Rklµν −Eklµν

≡ aklµν +bklµν

≡ H ×gklµν ≡ Hklµν

≡ E ×gklµν

(161)

Definition 2.55 (The n-index D dimensional stress-energy and momentum tensor Eklµν . . . ). The
n-index D dimensional stress-energy-momentum tenosr denoted as Eklµν . . . is determined in detail as

Eklµν . . . ≡
(

8×π × γ ×T
c4 ×D

)
×gklµν . . .

≡ Rklµν . . . −
((

R
2

)
×gklµν . . .

)
+
(
Λ×gklµν . . .

)
≡ Gklµν . . . +

(
Λ×gklµν . . .

)
≡ Rklµν . . . −Eklµν . . .

≡ aklµν . . . +bklµν . . .

≡ H ×gklµν . . . ≡ Hklµν . . .

≡ E ×gklµν . . .

(162)
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Definition 2.56 (The tensor of non-energy Eµν ). Under conditions of Einstein’s general (Einstein,
1915, 1916, 1917, 1935, Einstein and de Sitter, 1932) theory of relativity, the tensor of non-energy or
the anti tensor of the stress energy tensor is defined/derived/determined as follows:

Eµν ≡ Rµν −
(

4×2×π × γ

c4

)
×T µν

≡
((

R
2

)
×gµν

)
−
(
Λ×gµν

)
≡
((

R
2
−Λ

)
×gµν

)
≡ cµν +dµν

≡ Ψ×gµν ≡ Ψµν

≡ E ×gµν

(163)

Definition 2.57 (The 4-index D dimensional tensor of non-energy Eklµν ). The 4-index D dimen-
sional tensor (Einstein, 1915, 1916, 1917, 1935, Einstein and de Sitter, 1932) of non-energy Eklµν is
defined as follows:

Eklµν ≡
(

R
D
×gklµν

)
−
((

8×π × γ ×T
c4 ×D

)
×gklµν

)
≡
((

R
2

)
×gklµν

)
−
(
Λ×gklµν

)
≡
((

R
2
−Λ

)
×gklµν

)
≡ cklµν +dklµν

≡ Ψ×gklµν ≡ Ψklµν

≡ E ×gklµν

(164)

Definition 2.58 (The n-th index D dimensional tensor of non-energy Eklµν . . . ). The n-th index D
dimensional tensor (Einstein, 1915, 1916, 1917, 1935, Einstein and de Sitter, 1932) of non-energy
Eklµν . . . is defined as follows:

Eklµν . . . ≡
(

R
D
×gklµν . . .

)
−
((

8×π × γ ×T
c4 ×D

)
×gklµν . . .

)
≡
((

R
2

)
×gklµν . . .

)
−
(
Λ×gklµν . . .

)
≡
((

R
2
−Λ

)
×gklµν . . .

)
≡ cklµν . . . +dklµν . . .

≡ Ψ×gklµν . . . ≡ Ψklµν . . .

≡ E ×gklµν . . .

(165)
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Definition 2.59 (The 4-index D dimensional Einstein’s curvature tensor Gklµν ). The Riemann ten-
sor Rklµν does not appear explicitly in Einstein’s gravitational field equations. Therefore, the question
is justified whether Einstein’s equation of gravitation are really the most general equations. Frėdėric
Moulin proposed in the year 2017 a kind of a generalized 4-index gravitational field equation which
contains the Riemann curvature tensor linearly (Moulin, 2017). Moulin himself ascribed an energy-
momentum to the gravitational field itself (Moulin, 2017, p. 5/8) which is not without problems.
Besides of all, it is known that the Riemann curvature tensor of general relativity Rklµν can be split
into different ways, including the Weyl conformal tensor Cklµν and the anti-Weyl conformal tensor
Cklµν or in other words the parts which involve only the Ricci tensor Rµν the curvature scalar R.
Because of these properties

(
Rklµν ≡Cklµν +Cklµν

)
it is possible to reformulate the famous Einstein

equation. The 4-index D dimensional Einstein’s curvature tensor (Einstein, 1915, 1916, 1917, 1935,
Einstein and de Sitter, 1932) denoted by Gklµν is defined (see Barukčić, 2020a) as follows:

Gklµν ≡ Rklµν −
((

R
2

)
×gklµν

)
≡
(

R
D

)
×gklµν −

((
R
2

)
×gklµν

)
≡
((

R
D

)
− R

2

)
×gklµν

≡ aklµν + cklµν

≡ G×gklµν

(166)

Definition 2.60 (The n-index D dimensional Einstein’s curvature tensor Gklµν . . . ). The n-index D
dimensional Einstein’s curvature tensor (Einstein, 1915, 1916, 1917, 1935, Einstein and de Sitter,
1932) denoted by Gklµν . . . is defined (see Barukčić, 2020a) as follows:

Gklµν . . . ≡ Rklµν . . . −
((

R
2

)
×gklµν . . .

)
≡
(

R
D

)
×gklµν . . . −

((
R
2

)
×gklµν . . .

)
≡
((

R
D

)
− R

2

)
×gklµν . . .

≡ aklµν . . . + cklµν . . .

≡ G×gklµν . . .

(167)

Definition 2.61 (The 4-index D dimensional anti Einstein’s curvature tensor or the tensor or
non-curvature G klµν ). The 4-index D dimensional anti Einstein’s curvature tensor (Einstein, 1915,
1916, 1917, 1935, Einstein and de Sitter, 1932) or the tensor of non-curvature denoted as G klµν is
defined/derived/determined (Barukčić, 2020a) as follows:
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G klµν ≡ Rklµν −Gklµν

≡ Rklµν −
(

Rklµν −
((

R
2

)
×gklµν

))
≡
(

R
2

)
×gklµν

≡ bklµν +dklµν

≡ G×gklµν

(168)

Definition 2.62 (The n-index D dimensional anti Einstein’s curvature tensor or the tensor of
non-curvature G klµν . . . ). The n-index D dimensional anti Einstein’s curvature tensor or the tensor
of non-curvature denoted as G klµν . . . is defined/derived/determined (Barukčić, 2020a) as follows:

G klµν . . . ≡ Rklµν . . . −Gklµν . . .

≡ Rklµν . . . −
(

Rklµν . . . −
((

R
2

)
×gklµν . . .

))
≡
(

R
2

)
×gklµν . . .

≡ bklµν . . . +dklµν . . .

≡ G×gklµν . . .

(169)

Definition 2.63 (The first quadratic Lorentz invariant F1 ). The inner product of Faraday’s electro-
magnetic field strength tensor yields a Lorentz invariant. The Lorentz invariant does not change from
one frame of reference to another. The first quadratic Lorentz invariant, denoted as F1 is determined
as

F1 ≡ Fkl ×Fkl (170)

The electromagnetic field tensor Fkl has two Lorentz invariant quantities. One of the two fundamen-
tal Lorentz invariant quantities of the electromagnetic field (Escobar and Urrutia, 2014) is known be
Fkl ×Fkl = 2×

(
B2 −E2) where E denotes the electric E and B the magnetic field in the taken frame

of reference.

Definition 2.64 (The second quadratic Lorentz invariant F2). The second quadratic Lorentz invari-
ant, denoted as F2 is determined as

F2 ≡ ε
klmn ×Fkl ×Fmn (171)

Definition 2.65 (The tensor bµν ). Again, the co-variant Minkowski’s stress-energy tensor of the elec-
tromagnetic field, in this context denoted by bµν , is of order two and its components can be displayed
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by a 4 × 4 matrix too. The trace of energy-momentum tensor of the electromagnetic field is known to
be null. Under conditions of Einstein’s general theory of relativity (Einstein, 1915, 1916, 1917, 1935,
Einstein and de Sitter, 1932), the tensor bµν denotes the trace-less, symmetric stress-energy tensor for
source-free electromagnetic field is defined in cgs-Gaussian units (depending upon metric signature)
as

bµν ≡
(

1
4×π

×
((

Fµ c ×Fν
c)+(1

4
×gµν ×Fde ×Fde

)))
(172)

(see Lehmkuhl, 2011, p. 13) and equally as

bµν ≡
(

1
4×π

×
((

Fµ c ×Fν d ×gcd
)
−
(

1
4
×gµν ×Fde ×Fde

)))
(173)

(see Hughston and Tod, 1990, p. 38). The co-variant Minkowski’s stress-energy tensor of the elec-
tromagnetic field is expressed under conditions of D = 4 space-time dimensions more compactly in a
coordinate-independent (theorem 3.1, equation 80 Barukčić, 2020a, p. 157) form as

bµν ≡
(

1
4×π

×
((

Fµ c ×Fν d ×gcd
)
+

(
1
4
×gµν ×Fde ×Fde

)))
≡
(

1
4×π

×
((

Fµ c ×Fµ c)+(F1

4

)))
×gµν

≡
((

R
D

)
−a− c−d

)
×gµν

≡ (E −a)×gµν

≡ b×gµν

(174)

where Fde is called the (traceless) Faraday/electromagnetic/field strength tensor.

Definition 2.66 (The 4-index D dimensional stress-energy tensor of electromagnetic field bklµν ).
The 4-index D dimensional stress-energy tensor of electromagnetic field bklµν is defined as:

bklµν ≡
((

R
D

)
−a− c−d

)
×gklµν

≡ (E −a)×gklµν

≡ b×gklµν

(175)

Definition 2.67 (The n-index D dimensional stress-energy tensor of electromagnetic field bklµν . . . ).
The n-index D dimensional stress-energy tensor of electromagnetic field bklµν . . . is defined as:

bklµν . . . ≡
((

R
D

)
−a− c−d

)
×gklµν . . .

≡ (E −a)×gklµν . . .

≡ b×gklµν . . .

(176)

Definition 2.68 (The tensor cµν ). Under conditions of Einstein’s general (Einstein, 1915, 1916,
1917, 1935, Einstein and de Sitter, 1932) theory of relativity, the tensor of non-momentum and curva-
ture is defined/derived/determined (Barukčić, 2020a) as follows:
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cµν ≡ bµν −
(
Λ×gµν

)
≡ (G−a)×gµν

≡
(

R
2
−Λ−d

)
×gµν

≡ (b−Λ)×gµν

≡ c×gµν

(177)

Definition 2.69 (The 4-index D dimensional tensor c klµν ). The 4-index D dimensional c klµν is
defined as:

cklµν ≡ (G−a)×gklµν

≡
(

R
2
−Λ−d

)
×gklµν

≡ (b−Λ)×gklµν

≡ c×gklµν

(178)

Definition 2.70 (The n-index D dimensional tensor c klµν . . . ). The n-index D dimensional c klµν . . .
is defined as:

cklµν . . . ≡ (G−a)×gklµν . . .

≡
(

R
2
−Λ−d

)
×gklµν . . .

≡ (b−Λ)×gklµν . . .

≡ c×gklµν . . .

(179)

Definition 2.71 (The tensor of neither curvature nor momentum dµν ). Under conditions of Ein-
stein’s general (Einstein, 1915, 1916, 1917, 1935, Einstein and de Sitter, 1932) theory of relativity,
the tensor of neither curvature nor momentum is defined/derived/determined (Barukčić, 2020a) as
follows:
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dµν ≡
((

R
2

)
×gµν

)
−bµν

≡
((

R
2

)
×gµν

)
−
(
Λ×gµν

)
− cµν

≡


((

R
D

)
×D

)
2

−b

×gµν

≡


((

R
D

)
×D

)
2

−Λ− c

×gµν

≡ R
D
× gwgµν

≡ d ×gµν

(180)

There may exist circumstances where this tensor might indicate something like the density of gravita-
tional waves. In detail, it is

dµν ≡ R
D
×gwgµν ≡

((
R
2

)
×gµν

)
−
(

1
4×π

×
((

Fµ c ×Fν d ×gcd
)
+

(
1
4
×gµν ×Fde ×Fde

)))
(181)

Under these circumstances, the metric tensor of the gravitational waves gwgµν would follow as

dgµν ≡ gwgµν ≡
D
R
×
(((

R
2

)
×gµν

)
−
(

1
4×π

×
((

Fµ c ×Fν d ×gcd
)
+

(
1
4
×gµν ×Fde ×Fde

))))
(182)

The cosmic microwave background (CMBR) radiation (Penzias and Wilson, 1965) is an electromag-
netic radiation which is part of the tensor bµν .

Definition 2.72 (The 4-index D dimensional d klµν ). The 4-index D dimensional d klµν is defined as:

dklµν ≡


((

R
D

)
×D

)
2

−b

×gklµν

≡


((

R
D

)
×D

)
2

−Λ− c

×gklµν

≡ d ×gklµν

(183)

Definition 2.73 (The n-index D dimensional d klµν . . . ). The n-index D dimensional d klµν . . . is defined
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as:

dklµν . . . ≡


((

R
D

)
×D

)
2

−b

×gklµν . . .

≡


((

R
D

)
×D

)
2

−Λ− c

×gklµν . . .

≡ d ×gklµν . . .

(184)

Table 4 provides an overview of the general definition of the relationships between the four basic
(Barukčić, 2016a,b) fields of nature under conditions of the general theory of relativity.

Curvature
YES NO

Momentum YES aµν bµν Eµν

NO cµν dµν Eµν

Gµν Gµν Rµν

Table 4. Einstein field equations and the four basic fields of nature
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2.9. Axioms

Whether science needs new and obviously generally valid statements (axioms) which are able to
assure the truth of theorems proved from them may remain an unanswered question. In order to be
accepted, a new axiom candidate (see Easwaran, 2008) should be at least as simple as possible and
logically consistent to enable advances in our knowledge of nature. The importance of axioms is par-
ticularly emphasized by Albert Einstein. “Die wahrhaft großen Fortschritte der Naturerkenntnis
sind auf einem der Induktion fast diametral entgegengesetzten Wege entstanden.” (see Einstein,
1919, p. 17). In general, lex identitatis, lex contradictionis and lex negationis have the potential to
denote the most simple, the most general and the most far-reaching axioms of science, the foundation
of our today’s and of our future scientific inquiry.

2.9.1. Principium identitatis (Axiom I)

Principium identitatis or lex identitatis or axiom I, is closely related to central problems of meta-
physics, epistemology and of science as such. It turns out that it is more than rightful to assume that

+1 ≡+1 (185)

is true, otherwise there is every good reason to suppose that nothing can be discovered at all.

Identity as the epitome of a self-identical is at the same time different from difference, identity is
free from difference, identity is at the same time the other of itself, identity is not difference. Identity
is in its very own nature different, it is in its own self the opposite of itself (symmetry). It is equally

−1 ≡−1 (186)

In general, +1 and -1 are distinguished, however these distinct are related to one and the same 1.
Identity as a vanishing of otherness, therefore, is this distinguishedness in one relation. It is

0 ≡+1−1 ≡ 0×1 ≡ 0 (187)

Identity, as the unity of something and its own other is in its own self a separation from difference,
and as a moment of separation might pass over into an equivalence relation which itself is reflexive,
symmetric and transitive. Nonetheless, backed by thousands of years of often bitter human experience,
the scientific development has taught us all that human knowledge is relative too. Even if experiments
and other suitable proofs are of help to encourage us more and more in our belief of the correctness of
a theory, it is difficult to prove the correctness of a theorem or of a theory et cetera once and for all.
The challenge for all the science is the need to comply with Einstein’s position: “Niemals aber kann
die Wahrheit einer Theorie erwiesen werden. Denn niemals weiß man, daß auch in Zukunft
eine Erfahrung bekannt werden wird, die Ihren Folgerungen widerspricht...” (Einstein, 1919).
Albert Einstein’s position translated into English: ‘But the truth of a theory can never be proven.
For one never knows if future experience will contradict its conclusion; and furthermore, there are
always other conceptual systems imaginable which might coordinate the very same facts.’Our human
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experience tells us that everything in life is more or less transitory, and that nothing lasts. As a result
of our knowledge and experience, several scientific theories have a glorious past to look back on, but
all the glory of such scientific theories might remain in the past if scientist don’t continue to innovate.
In a word, theories can be refuted by time.

“No amount of experimentation can ever prove me right;
a single experiment can prove me wrong.”

(Albert Einstein according to: Robertson, 1998, p. 114)

In the light of the foregoing, it is clear that appropriate axioms and conclusions derived from the
same are a main logical foundation of any ‘theory’.

“Grundgesetz (Axiome) und Folgerungen zusammen bilden das was man eine ‘Theorie’ nennt.
”

(Einstein, 1919)

However, another point is worth being considered again. One single experiment can be enough to
refute a whole theory. Albert Einstein’s (1879-1955) message translated into English as: Basic law
(axioms) and conclusions together form what is called a ‘theory’ has still to get round. However,
an axiom as a free creation of the human mind which precedes all science should be like all other
axioms, as simple as possible and as self-evident as possible. Historically, the earliest documented
use of the law of identity can be found in Plato’s dialogue Theaetetus (185a) as “... each of the two
is different from the other and the same as itself ”6 . However, Aristotle (384–322 B.C.E.), Plato’s
pupil and equally one of the greatest philosophers of all time, elaborated on the law of identity too. In
Metaphysica, Aristotle wrote:

“... all things ... have some unity and identity. ”

(see Aristotle, of Stageira (384-322 B.C.E), 1908, Metaphysica, Chapter IV, 999a, 25-30, p. 66)

In Prior Analytics, 7 , 8 Aristotle, a tutor Alexander, the thirteen-year-old son of Philip, the king of
Macedon, is writing: “When A applies to the whole of B and of C, and is other predicated of nothing

6Plato’s dialogue Theaetetus (185a), p. 104.
7Aristotle, Prior Analytics, Book II, Part 22, 68a
8Kenneth T. Barnes. Aristotle on Identity and Its Problems. Phronesis. Vol. 22, No. 1 (1977), pp. 48-62 (15 pages)
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else, and B also applies to all C, A and B must be convertible. For since A is stated only of B and
C, and B is predicated both of itself and of C, it is evident that B will also be stated of all subjects
of which A is stated, except A itself. ”9 , 10 For the sake of completeness, it should be noted at the
outset that Aristotle himself preferred the law of contradiction and the law of excluded middle as
examples of fundamental axioms. Nonetheless, it is worth noting that lex identitatis is an axiom too,
which possess the potential to serve as the most basic and equally the most simple axiom of science
but has been treated by Aristotle in an inadequate manner without having any clear and determined
meaning for Aristotle himself. Nonetheless, something which is really just itself is equally different
from everything else. In point of fact, is such an equivalence (Degen, 1741) which everything has to
itself inherent or must the same be constructed by human mind and consciousness. Can and how can
something be identical with itself (Förster and Melamed, 2012, Hegel, Georg Wilhelm Friedrich,
1812a, Koch, 1999, Newstadt, 2015) and in the same respect different from itself. An increasingly
popular view on identity is the one advocated by Gottfried Wilhelm Leibniz (1646-1716):

“Chaque chose est ce qu’elle est. Et dans autant d’exemples qu’on voudra
A est A,

B est B. ”
(Leibniz, 1765, p. 327)

or A = A, B = B or +1 = +1. In other words, a thing is what it is (Leibniz, 1765, p. 327). Leib-
niz’ principium identitatis indiscernibilium (p.i.i.), the principle of the indistinguishable, occupies a
central position in Leibniz’ logic and metaphysics and was formulated by Leibniz himself in different
ways in different passages (1663, 1686, 1704, 1715/16). All in all, Leibniz writes:

“C’est
le principe des indiscernables,

en vertu duquel
il ne saurait exister dans la nature deux êtres identiques.

...
Il n’y a point deux individus indiscernables. ”
(see Leibniz, Gottfried Wilhelm, 1886, p. 45)

Exactly in complete compliance with Leibniz, Johann Gottlieb Fichte (1762 - 1814) elaborates on this
subject as follows:

9Aristotle, Prior Analytics, Book II, Part 22, 68a, p. 511.
10Ivo Thomas. On a passage of Aristotle. Notre Dame J. Formal Logic 15(2): 347-348 (April 1974). DOI: 10.1305/ndjfl/1093891315
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“Each thing is what it is ;
it has those realities which are posited when it is posited,

(A = A.) ”
(Fichte, 1889)

Hegel preferred to reformulate an own version of Leibnitz principium identitatis indiscernibilium in
his own way by writing that “All things are different, or: there are no two things like each other. ”(see
Hegel, Georg Wilhelm Friedrich, 1991, p. 422). Much of the debate about identity is still a matter of
controversy. This issue has attracted the attention of many authors and has been discussed by Hegel
too. In this context, it is worth to consider Hegel’s radical position on identity.

“The other expression of the law of identity: A cannot at the same time be A and not-A, has a
negative form; it is called
the law of contradiction. ”

(Hegel, Georg Wilhelm Friedrich, 1991, p. 416)

We may, usefully (see Barukčić, 2019a), state Russell’s position with respect to the identity law as
mentioned in his book ‘The problems of philosophy ’ (see Russell, 1912). In particular, according to
Russell,

“...principles have been singled out by tradition under the name of ‘Laws of Thought.’ They are as
follows:

(1) The law of identity: ‘Whatever is,is.
(2)The law of contradiction: ‘Nothing can both be and not be.’

(3) The law of excluded middle: ‘Everything must either be or not be.’
These three laws are samples of self-evident logical principles, but are not really more fundamental
or more self-evident than various other similar principles: for instance, the one we considered just
now, which states that what follows from a true premise is true. The name ‘laws of thought’ is also
misleading, for what is important is not the fact that we think in accordance with these laws, but the

fact that things behave in accordance with them; ”

(see Russell, 1912, p. 113)

Russell’s critique, that we tend too much to focus only on the formal aspects of the ‘Laws of Thoughts’
with the consequence that “... we thing in accordance with these laws” (see Russell, 1912, p. 113) is
justified. Judged solely in terms of this aspect, it is of course necessary to think in accordance with the
‘Laws of Thoughts’. But this is not the only aspect of the ‘Laws of Thoughts’. The other and may be
much more important aspect of these ‘Laws of Thoughts’is the fact that quantum mechanical objects
or that “... things behave in accordance with them” (see Russell, 1912, p. 113).
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2.9.2. Principium contradictionis (Axiom II)

Principium contradictionis or lex contradictionis 11 , 12 , 13 or axiom II, the other of lex identitatis,
the negative of lex identitatis, the opposite of lex identitatis, a complementary of lex identitatis, can be
expressed mathematically as

+0 ≡ 0×1 ≡+1 (188)

In addition to the above, from the point of view of mathematics, axiom II (equation 188) is equally the
most simple mathematical expression and formulation of a contradiction. However, there is too much
practical and theoretical evidence that a lot of ‘secured’mathematical knowledge and rules differ too
generously from real world processes, and the question may be asked whether mathematical truths can
be treated as absolute truths at all. Many of the basic principle of today’s mathematics allow every
single author defining the real world events and processes et cetera in a way as everyone likes it for
himself. Consequentially, a resulting dogmatic epistemological subjectivism and at the end agnosticism
too, after all, is one of the reasons why we should rightly heed the following words of wisdom of Albert
Einstein.

“I don’t
believe in

mathematics.”
(Albert Einstein cited according to Brian, 1996, p. 76)

In the long term, however, the above attitude of mathematics is not sustainable. History has taught us
time and time again that objective reality has the potential to correct wrong human thinking slowly but
surely, and many more than this. Objective reality has demonstrably corrected wrong human thinking
again and again in the past.

Despite all the adversities, it is necessary and crucial to consider that a self-identical as the opposite
of itself is no longer only self-identity but a difference of itself from itself within itself. In other
words, in opposition, a self-identical is able to return into simple unity with itself with the consequence
that even as a self-identical the same self-identical is inherently self-contradictory. A question of
fundamental theoretical importance is, however, why should something be itself and at the same time

11Horn, Laurence R., ”Contradiction”, The Stanford Encyclopedia of Philosophy (Winter 2018 Edition), Edward N. Zalta (ed.), URL
= https://plato.stanford.edu/archives/win2018/entries/contradiction/.

12Barukčić I. Aristotle’s law of contradiction and Einstein’s special theory of relativity. Journal of Drug Delivery and Therapeutics
(JDDT). 15Mar.2019;9(2):125-43. https://jddtonline.info/index.php/jddt/article/view/2389

13Barukčić, Ilija. (2020, December 28). The contradiction is exsiting objectively and real (Version 1). Zenodo.
https://doi.org/10.5281/zenodo.4396106
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the other of itself, the opposite of itself, not itself? Is something like this even possible at all and if so,
why and how? These and similar questions have occupied many thinkers, including Hegel.

“Something is therefore
alive only in so far as it contains contradiction within it,

and moreover is this power to
hold and endure the contradiction within it. ”

(see Hegel, Georg Wilhelm Friedrich, 1991, p. 440)

However, as directed against identity, contradiction itself is also at the same time a source of self-
changes out of itself of a self-identical.

“... contradiction
is the root of all movement and vitality;

it is only in so far as something has a contradiction within it
that it moves, has an urge and activity. ”

(see Hegel, Georg Wilhelm Friedrich, 1991, p. 439)

The further advance of science will throw any contribution to scientific progress of each of us back
into scientific insignificance, as long as principium contradictioni is not given enough and the right
attention. The contradiction 14 is existing objectively and real and is the heartbeat of every self-
identical. We have reason to be delighted by the fact that very different aspects of principium contra-
dictionis have been examined since centuries from different angles by various authors. According to
Aristotle, principium contradictionis applies to everything that is.

“... the same ... cannot at the same time belong and not belong to the same
... in the same respect ... This, then, is

the most certain of all principles ”

(see Aristotle, of Stageira (384-322 B.C.E), 1908, Metaph., IV, 3, 1005b, 16–22)

Principium contradictionis or axiom II has many facets. As long as we follow Leibniz in this re-
gard, we should consider that “Le principe de contradiction est en general ... ”(Leibniz, 1765, p.
327). Scientist inevitably have false beliefs and make mistakes. In order to prevent scientific results
from falling into logical inconsistency or logical absurdity, it is necessary to posses among other the
methodological possibility to start a reasoning with a (logical) contradiction too. However and in con-
trast to the way of reasoning with inconsistent premises as proposed by para-consistent (Carnielli and

14Barukčić, Ilija. (2020, December 28). The contradiction is existing objectively and real (Version 1). Zenodo.
https://doi.org/10.5281/zenodo.4396106
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Marcos, 2001, da Costa, 1974, 1958, Priest, 1998, Priest et al., 1989, Quesada, 1977) and other logic,
in the absence of technical and other errors of reasoning, the contradiction itself need to be preserved.
In other words, from a contradiction does not anything follows but the contradiction itself while
the theoretical question is indeed justified “What is so Bad about Contradictions? ” (Priest, 1998).
Historically, the principle of (deductive) explosion (Carnielli and Marcos, 2001, Priest, 1998, Priest
et al., 1989), coined by 12th-century French philosopher William of Soissons, demand us to accept that
anything, including its own negation, can be proven or can be inferred from a contradiction. In short,
according to ex falso sequitur quodlibet, a (logical) contradiction implies anything. Respecting the
principle of explosion, the existence of a contradiction (or the existence of logical inconsistency) in a
scientific theorem, rule et cetera is disastrous. However, the historical development of science shows
that scientist inevitably revise the theories, false positions and claims are identified once and again, and
we all make different kind of mistakes. In order to avert disproportionately great damage to science
and to prevent reducing science into pure subjective belief, a negation of the principle of explosion is
required. Nonetheless, a justified negation of the ex contradictione quodlibet principle (Carnielli
and Marcos, 2001) does not imply the correctness of para consistent logic (Carnielli and Marcos,
2001, da Costa, 1974, 1958, Priest, 1998, Priest et al., 1989, Quesada, 1977) as such as advocated es-
pecially by the Peruvian philosopher Francisco Miró Quesada (Quesada, 1977) and other (Carnielli
and Marcos, 2001, da Costa, 1974, 1958, Priest, 1998, Priest et al., 1989). In general, scientific theories
appear to progress from lower and simpler to higher and more complex levels. However, high level
theories cannot be taken for granted because high level theories are grounded on a lot of assumptions,
definitions and other procedures and may rest upon too much erroneous stuff even if still not identified.
Therefore, it should be considered to check at lower at simpler levels like with like.

2.9.3. Principium negationis (Axiom III)

Lex negationis or axiom III, is often mismatched with simple opposition. However, from the point
of view of philosophy and other sciences, identity, contradiction, negation and similar notions are
equally mathematical descriptions of the most simple laws of objective reality. What sort of natural
process is negation at the end? Mathematically, we define principium negationis or lex negationis or
axiom III as

Negation(0) ×0 ≡ ¬(0)×0 ≡+1 (189)

where ¬ denotes (logical (Boole, 1854) or natural) negation (Ayer, 1952, Förster and Melamed, 2012,
Hedwig, 1980, Heinemann, 1943, Horn, 1989, Koch, 1999, Kunen, 1987, Newstadt, 2015, Royce,
1917, Speranza and Horn, 2010, Wedin, 1990b). In this context, there is some evidence that

Negation(1) ×1 ≡ ¬(1)×1 = 0 (190)

Logically, it follows that
Negation(1) ≡ 0 (191)

In the following we assume that axiom I is universal. Under this assumption, the following theorem
follows inevitably.
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Theorem 2.2 (Zero divided by zero). According to classical logic, it is

0
0
≡ 1 (192)

Proof by direct proof. The premise

1 ≡ 1 (193)

is true. It follows that

0 ≡ 0
≡ 0×1

(194)

In the following, we rearrange the premise (see equation 189, p. 57). We obtain

0× (Negation(0) ×0)≡ 0 (195)

Equation 195 changes slightly (see equation 190, p. 57). It is

(Negation(1) ×1)× (Negation(0) ×0)≡ 0 (196)

Equation 196 demands that

(Negation(1) )× (Negation(0) )×0 ≡ 0 (197)

Equation 197 is logically possible (see equation 187, p. 51) only if

(Negation(1) )× (Negation(0) )≡ 1 (198)

Whatever the meaning of Negation(1) or of Negation(0) might be, equation 198 demands that

Negation(0) ≡ 1
Negation(1)

(199)

and that

Negation(1) ≡ 1
Negation(0)

(200)

Equation 199 simplifies as (see equation 191, p. 57)

Negation(0) ≡ +1
Negation(1)

≡ +1
+0

(201)

It follows that
¬(0)×0 ≡ 1

0
×0 ≡ 0

0
≡ 1 (202)

To bring it to the point. Classical logic, assumed as generally valid, demands that

0
0
≡ 1 (203)

□
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Concepts like identity, difference, negation, opposition et cetera engaged the attention of scholars
at least over the last twenty-three centuries (see also Horn, 1989, Speranza and Horn, 2010). As
long as we first and foremost follow Josiah Royce, negatio or negation “is one of the simplest and
most fundamental relations known to the human mind. For the study of logic, no more important
and fruitful relation is known.” (see also Royce, 1917, p. 265) But, do we really know what, for
sure, what negation is? Based on what we know about negation, Aristotle (see also Wedin, 1990a)
has been one of the first to present a theory of negation, which can be found in discontinuous chunks
in his works the Metaphysics, the Categories, De Interpretatione, and the Prior Analytics (see also
Horn, 1989, p. 1). Negation (see also Newstadt, 2015) as a fundamental philosophical concept
found its own very special melting point especially in Hegel’s dialectic and is more than just a formal
logical process or operation which converts true to false or false to true. Negation as such is a natural
process too and equally ‘an engine of changes of objective reality ” (see also Barukčić, 2019a).
However, it remains an open question to establish a generally accepted link between this fundamental
philosophical concept and an adequate counterpart in physics, mathematics and mathematical statistics
et cetera. Especially the relationship between creation and conservation or creatio ex nihilio (see
also Donnelly, 1970, Ehrhardt, 1950, Ford, 1983), determination and negation (see also Ayer, 1952,
Hedwig, 1980, Heinemann, 1943, Kunen, 1987) has been discussed in science since ancient (see also
Horn, 1989, Speranza and Horn, 2010) times too. Why and how does an event occur or why and
how is an event created (creation), why and how does an event maintain its own existence over time
(conservation)? The development of the notion of negation leads from Aristotle to Meister Eckhart
(see also Eckhart, 1986) von Hochheim (1260-1328), commonly known as Meister Eckhart (see also
Tsopurashvili, 2012) or Eckehart, to Spinoza (1632 – 1677), to Immanuel Kant (1724-1804) and finally
to Georg Wilhelm Friedrich Hegel (1770-1831) and other authors too. One point is worth being noted,
even if it does not come as a surprise, it was especially Benedict de Spinoza (1632 – 1677) as one of the
philosophical founding fathers of the Age of Enlightenment who addressed the relationship between
determination and negation in his lost letter of June 2, 1674 to his friend Jarig Jelles (see also Förster
and Melamed, 2012) by the discovery of his fundamental insight that “ determinatio negatio est”
(see also Spinoza, 1674, p. 634). Hegel went even so far as to extended the slogan raised by Spinoza
into to “Omnis determinatio est negatio” (see also Hegel, Georg Wilhelm Friedrich, 1812b, 2010, p.
87). Finally, it did not take too long, and the notion of negation entered the world of mathematics
and mathematical logic at least with Boole’s (see also Boole, 1854) publication in the year 1854.
“Let us, for simplicity of conception, give to the symbol x the particular interpretation of men, then
1 - x will represent the class of ’not-men’.” (see also Boole, 1854, p. 49). Finally, the philosophical
notion negation found its own way into physics by the contributions of authors like Woldemar Voigt
(see Voigt, 1887), George Francis FitzGerald (see FitzGerald, 1889), Hendrik Antoon Lorentz (see
Lorentz, 1892, 1899), Joseph Larmor (see Larmor, 1897), Jules Henri Poincaré (see Poincaré, 1905)
and Albert Einstein (see Einstein, 1905b) by contributions to the physical notion “Lorentz factor”.
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3. Results

3.1. Energy time and space

Theorem 3.1 (Space is determined by energy and a third). In general, space is determined by energy
and a third as

RSt ≡+(RE t)+
(

Rgt × c2) (204)

Proof by direct proof. If the premise
+1 =+1︸       ︷︷       ︸
(Premise)

(205)

is true, then the following conclusion

RSt ≡+(RE t)+
(

Rgt × c2
)

(206)

is also true, again the absence of any technical errors presupposed. The premise

+1 ≡+1 (207)

is true. We multiply equation 207 through by RUt. It is

RU t ≡ RU t (208)

We add zero to equation 208. It is
RU t +0 ≡ RU t +0 (209)

Matter, denoted by RMt from the point of view of a stationary observer R, is one determining part of
equation 209. Equation 209 changes to

RU t ≡ RU t −RMt +RMt (210)

Following Einstein’s path of thought, it is “... ‘Materie’... alles außer dem Gravitationsfeld ...” (Ein-
stein, 1916, p. 802/803) or all but matter is gravitational field. Equation 210 becomes in accordance
with equation 133

RU t ≡ Rgt +RMt (211)

Multiplying equation 211 by the term

(√
1− v2

c2

)
it is

RU t ×

√
1− v2

c2

≡

Rgt ×

√
1− v2

c2

+

RMt ×

√
1− v2

c2

 (212)

where v is the relative velocity between the co-moving observer 0 and the stationary observer R, c is
the speed of the light in vacuum. Equation 212 simplifies according to equation 135, equation 136 and
equation 137 as

0U t ≡ 0gt + 0Mt (213)
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Normalizing the relationship between matter and gravitational field from the point of view of a station-
ary observer R, equation 211 becomes

Rgt

RU t
+

RMt

RU t
≡ RU t

RU t
≡+1 (214)

Equation 214 demands that

Rgt ≡ RU t ×
(

1− RMt

RU t

)
(215)

and equally that

Rgt
2 ≡ RU t

2 ×
(

1− RMt

RU t

)
2 (216)

Furthermore, equation 214 demands that

RMt ≡ RU t ×
(

1− Rgt

RU t

)
(217)

and that

RMt
2 ≡ RU t

2 ×
(

1− Rgt

RU t

)
2 (218)

Normalizing the relationship between matter and gravitational field from the point of view of a co-
moving observer 0, equation 213 becomes

0gt

0U t
+

0mt

0U t
≡ 0U t

0U t
≡+1 (219)

Equation 219 demands that

0gt ≡ 0U t ×
(

1− 0mt

0U t

)
(220)

and equally that

0gt
2 ≡ 0U t

2 ×
(

1− 0mt

0U t

)
2 (221)

Furthermore, equation 219 demands that

0mt ≡ 0U t ×
(

1− 0gt

0U t

)
(222)

and that

0mt
2 ≡ 0U t

2 ×
(

1− 0gt

0U t

)
2 (223)

According to equation 212 it is

(0gt)≡

Rgt ×

√
1− v2

c2

 (224)
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or

0gt
2 ≡

Rgt ×

√
1− v2

c2

2 (225)

or
0gt

2

Rgt2
≡
(

1− v2

c2

)
(226)

Multiplying equation 211 by c2, it is(
RU t × c2

)
≡
(

Rgt × c2
)
+
(

RMt × c2
)

(227)

According to equation 119, equation 227 becomes(
RU t × c2

)
≡
(

Rgt × c2
)
+(RE t) (228)

According to equation 133, equation 228 changes again. In general, it is

(RSt)≡+(RE t)+
(

Rgt × c2
)

(229)

□

Energy (REt) is a determining part of space (RSt), however something else, derived as
(

Rgt × c2),
which is different from the gravitational field (Rgt), too. It is necessary to highlight at least one of the
main differences between special theory of relativity and general theory of relativity. Special theory of
relativity works more with the gravitational field, while general relativity works with the gravitational
potential, both are deeply related but not completely identical.

3.2. The relativistic Schrödinger equation

Theorem 3.2 (The relativistic Schrödinger equation). The relativistic Schrödinger equation is given
by the relationship

(PE t ×Ψ)+(KE t ×Ψ)≡ H ×Ψ (230)

where H is the Hamiltonian operator, Ψ is the wave function, PEt is the relativistic potential energy
and KEt is the relativistic kinetic energy.

Proof by direct proof. If the premise
+1 =+1︸       ︷︷       ︸
(Premise)

(231)

is true, then the following conclusion

(PE t ×Ψ)+(KE t ×Ψ)≡ H ×Ψ (232)
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is also true, again the absence of any technical errors presupposed. The premise

+1 ≡+1 (233)

is true. We multiply equation 233 through by RMt. It is

RMt ≡ RMt (234)

Multiplying equation 234 by the term

(√
1− v2

c2

)
it is

RMt ×

√1− v2

c2

≡ RMt ×

√1− v2

c2

 (235)

Equation 235 becomes

0mt ≡ RMt ×

√1− v2

c2

 (236)

Equation 236 changes to

0mt
2 ≡ RMt

2 ×

√1− v2

c2

2 (237)

and to
0mt

2

RMt2
≡
(

1− v2

c2

)
(238)

Furthermore, it is
c2 × c2 × 0mt

2

c2 × c2 ×RMt2
≡
(

1− v2

c2

)
(239)

or
0E t

2

RE t2
≡
(

1− v2

c2

)
(240)

Equation 240 changes to the normalized relativistic energy momentum relation as(
0E t

2

RE t2

)
+

(
v2

c2

)
≡+1 (241)

Rearranging equation 241, it is (
0E t

2

RE t2

)
+

(
RMt × v2

RMt × c2

)
≡+1 (242)

We define the relativistic kinetic(Barukčić, 2013, 2016b) energy, denoted by KEt, something similar to
Leibniz’ vis viva (Barukčić, 2016b, Leibniz, 1686, 1695), as

KE t ≡ RMt × v2 (243)
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Based on equation 243, the energy of an electromagnetic wave, WEt, follows as

WE t
2 ≡ (KE t)× (RE t) (244)

Equation 242 becomes (
0E t

2

RE t2

)
+

(
KE t

RE t

)
≡+1 (245)

Einstein himself is demanding the following “Jeglicher Energie E kommt also im Gravitationsfelde
eine Energie der Lage zu, die ebenso groß ist, wie die Energie der Lage einer ‘ponderablen’ Masse von
der Größe E/c²”(Einstein, 1908). Translated into English: ‘Thus, to each energy E in the gravitational
field, there corresponds an energy of position that equals the potential energy of a ‘ponderable’ mass
of magnitude E/c²’. Following Einstein, we define the relativistic potential(Barukčić, 2013, 2016b)
energy, PEt, as

PE t ≡
(

0E t
2

RE t

)
≡
(

0E t

RE t

)
× 0E t ≡

√1− v2

c2

× 0E t (246)

Equation 245 becomes (
PE t

RE t

)
+

(
KE t

RE t

)
≡+1 (247)

Multiplying equation 247 by the term H ×Ψ where H is the Hamiltonian and Ψ is the wave function it
is (

PE t ×H ×Ψ

RE t

)
+

(
KE t ×H ×Ψ

RE t

)
≡ H ×Ψ (248)

In quantum mechanics, the Hamiltonian of a certain system, denoted by H, is an operator corresponding
to the total energy of a certain system. In the special theory of relativity, the total energy of a certain
system is given by REt. However, the total energy of a certain system is the total energy of a certain
system, there is no more energy left, independently of the notions and the mathematical framework
used to describe the same system, both are identical. In the following, we assume that H = REt.
Equation 248 changes a bit. The relativistic Schrödinger equation is given by the relationship

(PE t ×Ψ)+(KE t ×Ψ)≡ H ×Ψ (249)

In general, based on equation 247 we must accept too, that

(PE t)+(RE t)≡ RE t (250)

Nonetheless, equation 241 can be rearranged from another point of view. It is(
0E t

2

RE t2

)
+

(
RMt

2 × v2 × c2

RMt
2 × c2 × c2

)
≡+1 (251)

The relativistic momentum Rpt is defined as R pt
2 ≡ RMt

2 × v2. Equation 251 simplifies as(
0E t

2

RE t2

)
+

(
R pt

2 × c2

RE t2

)
≡+1 (252)
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The energy of an electromagnetic wave, denoted as WEt, is defined as WE t
2 ≡ R pt

2 × c2 ≡ h2 ×R f t
2

where h is Planck’s constant and Rft is the frequency as determined by a stationary observer. Equation
252 changes to the particle-wave duality (Barukčić, 2013) relationship, as(

0E t
2

RE t2

)
+

(
WE t

2

RE t2

)
≡+1 (253)

Meanwhile we must once again repeat the following point. It is(
v2

c2

)
≡
(

RMt
2 × v2 × c2

RMt
2 × c2 × c2

)
≡
(

R pt
2 × c2

RE t2

)
≡
(

WE t
2

RE t2

)
(254)

Multiplying equation 253 by the term H ×Ψ where H is the Hamiltonian and Ψ is the wave function it
is (

0E t
2

RE t2

)
×H ×Ψ+

(
WE t

2

RE t2

)
×H ×Ψ ≡ H ×Ψ (255)

Under conditions where H ≡ RE t, the relativistic Schrödinger equation follows as(
0E t

2 ×Ψ

RE t

)
+

(
WE t

2 ×Ψ

RE t

)
≡ H ×Ψ (256)

□

3.3. The normalized relativistic time relation

Theorem 3.3 (The normalized relativistic time relation). The normalized relativistic time relation is
given by the equation (

0t t
2

Rt t2

)
+

(
Wt t

2

Rt t2

)
≡+1 (257)

Proof by direct proof. If the premise
+1 =+1︸       ︷︷       ︸
(Premise)

(258)

is true, then the following conclusion (
0t t

2

Rt t2

)
+

(
Wt t

2

Rt t2

)
≡+1 (259)

is also true, again the absence of any technical errors presupposed. The premise

+1 ≡+1 (260)

is true. We multiply equation 260 through by the time as determined by a stationary observer R, Rtt. It
is

Rt t ≡ Rt t (261)
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Multiplying equation 261 by the term

(√
1− v2

c2

)
it is

Rt t ×

√1− v2

c2

≡ Rt t ×

√1− v2

c2

 (262)

According to Einstein(Einstein, 1905d, p. 904), equation 262 becomes

0t t ≡ Rt t ×

√1− v2

c2

 (263)

In the following, equation 263 changes to

0t t
2 ≡ Rt t

2 ×

√1− v2

c2

2 (264)

and to
0t t

2

Rt t2
≡
(

1− v2

c2

)
(265)

Furthermore, it is
c2 × c2 × 0t t

2

c2 × c2 ×Rt t2
≡ 0t t

2

c2 × c2 ×
c2 × c2

0t t2
≡
(

1− v2

c2

)
(266)

or (see equation 226)
0gt

2

Rgt2
≡
(

1− v2

c2

)
(267)

Equation 265 changes to (
0t t

2

Rt t2

)
+

(
v2

c2

)
≡+1 (268)

and euqally to (
v2

c2

)
≡ 1−

(
0t t

2

Rt t2

)
(269)

Rearranging equation 268 further, it is(
0t t

2

Rt t2

)
+

(
Rgt

2 × v2 × c2

Rgt
2 × c2 × c2

)
≡+1 (270)

It is necessary (see equation 123 and 131) to be considered that(
v2

c2

)
≡
(

Rgt
2 × v2 × c2

Rgt
2 × c2 × c2

)
≡
(

Kredt t
2 × c2

Rt t2

)
≡
(

Wt t
2

Rt t2

)
(271)

Equation 271 demands too, that,

Wt t
2 ≡

(
v2

c2

)
×Rt t

2 (272)
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As known, the mathematical identity Wtt is defined as Wt t
2 ≡ Rgt

2 × v2 × c2 (see equation 123). Equa-
tion 270 simplifies further. In general, the normalized relativistic time relation is given by the equation(

0t t
2

Rt t2

)
+

(
Wt t

2

Rt t2

)
≡+1 (273)

□

Theorem 3.4 (Time is exsisting objectively and real). Taking Kant(see Kant, 1770) for granted, “Time
is not something objective and real, neither a substance, nor an accident, nor a relation.” (see also
(English) Kant, 1894, p. 61). However, in complete contrast to Kant, Einstein’s special theory of
relativity demand us to accept that time is existing objectively and real. In general, we must consider
that

1− v2

c2 ≡ 0E t
2

RE t2
≡ 0t t

2

Rt t2
(274)

Proof by direct proof. If the premise
+1 =+1︸       ︷︷       ︸
(Premise)

(275)

is true, then the following conclusion

1− v2

c2 ≡ 0E t
2

RE t2
≡ 0t t

2

Rt t2
(276)

is also true, again the absence of any technical errors presupposed. The premise

+1 ≡+1 (277)

is true. We multiply equation 277 through by the term
(

1− v2

c2

)
, it is

1− v2

c2 ≡ 1− v2

c2 (278)

Equation 278 changes to (see equation 240)

1− v2

c2 ≡ 0E t
2

RE t2
(279)

Equation 279 changes (see equation 265) to

1− v2

c2 ≡ 0E t
2

RE t2
≡ 0t t

2

Rt t2
(280)

□
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Time itself is not depending on human mind and consciousness but existing objectively and real.
The behaviour of time is linked and determined by the behaviour of energy (see equation 280) and/or
vice versa, and not to human mind and consciousness. However, time itself is not energy, it is the other
of energy, it is the complementary of energy, it is the opposite of energy. And what is most important,
time itself has another form of existence than energy/matter, time is non-matter. Special relativity and
equation 280 forces us to accept the objective existence of a non-material world, however the same
might be organized by nature. Theoretically it would be conceivable that energy might pass over into
time and time into energy. Space is this interaction between energy and time, or at least appears to be,
the unity and the struggle of energy and time.

Theorem 3.5 (The First Basic Law of Special Relativity). The first(Barukčić, 2016b) basic law of
special relativity is given by

0E t × Rt t ≡ 0t t × RE t (281)

Proof by direct proof. If the premise
+1 =+1︸       ︷︷       ︸
(Premise)

(282)

is true, then the following conclusion

0E t ×Rt t ≡ 0t t ×RE t (283)

is also true, again the absence of any technical errors presupposed. The premise

+1 ≡+1 (284)

is true. We multiply equation 284 through by the term
(

1− v2

c2

)
, it is

1− v2

c2 ≡ 1− v2

c2 (285)

Equation 285 changes to (see equation 240)

0E t
2

RE t2
≡ 1− v2

c2 (286)

Equation 286 changes (see equation 265) to

0E t
2

RE t2
≡ 0t t

2

Rt t2
(287)

Rearranging equation 287 it is
0E t

2 ×Rt t
2 ≡ 0t t

2 ×RE t
2 (288)

Equation 288 can be simplified. The first basic law of special relativity follows, as

0E t ×Rt t ≡ 0t t ×RE t (289)

□
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The second(Barukčić, 2016b) basic law can be derived similarly.

Theorem 3.6 (Energy is determined by time). Energy is determined by time as given by the equation

RE t
2 ≡ 0E t

2

0t t2
× Rt t

2 (290)

Proof by direct proof. According to equation 287 it is

0E t
2

RE t2
≡ 0t t

2

Rt t2
(291)

Rearranging equation 291, it is

RE t
2 ≡ 0E t

2

0t t2
×Rt t

2 (292)

□

Theorem 3.7 (Time is determined by energy). Time is determined by energy as indicated by the equa-
tion

Rt t
2 ≡ 0t t

2

0E t2
× RE t

2 (293)

Proof by direct proof. According to equation 287 it is

0E t
2

RE t2
≡ 0t t

2

Rt t2
(294)

Rearranging equation 294, it is

Rt t
2 ≡ 0t t

2

0E t2
×RE t

2 (295)

□

Theorem 3.8 (Space as the unity and the struggle between energy and time).(
RE t

2)+ (Rt t
2)≡ (0E t

2

0t t2
× Rt t

2
)
+

(
0t t

2

0E t2
× RE t

2
)

(296)

Proof by direct proof. It is (
RE t

2
)
+
(

Rt t
2
)
≡
(

RE t
2
)
+
(

Rt t
2
)

(297)

Equation 297 becomes (see equation 292)(
RE t

2
)
+
(

Rt t
2
)
≡
(

0E t
2

0t t2
×Rt t

2
)
+
(

Rt t
2
)

(298)

Equation 298 becomes (see equation 295)(
RE t

2
)
+
(

Rt t
2
)
≡
(

0E t
2

0t t2
×Rt t

2
)
+

(
0t t

2

0E t2
×RE t

2
)

(299)

□
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3.4. Energy, time and space I

Energy, time and space were addressed in the history of science, in the following mentioned only
exemplarily, from Aristotle moving on to Newton, through to Leibniz, Kant and other over and over
again with contradictory results. Even today’s concepts of energy, time and space have not answered
the fundamental question of what is the intrinsic nature of energy, time and space. So it is not surprising
that Einstein himself seriously challenged the long period of dominance of Newton’s conception of
absolute space and of absolute time. However, in order to reply to the question of energy, time and
space it might prove helpful to evaluate once again Einstein’s understanding of view fundamental
relationships of nature. And that is why, with the utmost admiration and joy, it is my great privilege to
be able to refer to what Einstein himself wrote:

“Wir unterscheiden im folgenden zwischen ‘Gravitationsfeld’und ‘Materie’, in dem Sinne, daß

alles außer dem Gravitationsfeld als ‘Materie’bezeichnet wird, also nicht nur

die ‘Materie’im üblichen Sinne, sondern auch das elektromagnetische Feld. ”

(Einstein, 1916, p. 802/803)

Finally, Einstein provide us by simple words of wisdom with the necessary knowledge to be able to dis-
tinguish the one from its own other. Einstein’s understanding of the relationship between energy/matter
which includes the electromagnetic field too and the gravitational field itself translated into English:
In the following we make a distinction between ‘gravitational field’ and ‘matter’ in this way, that we
denote everything but the gravitational field as ‘matter’, that is to say not only the ‘matter’ in the
ordinary sense, but also the electromagnetic field as well. In this regard, Einstein’s position under
consideration can be clarified and demonstrated easily by using the following picture.

Gravitational field

M a t t e r

Everything (i.e. RUt) as the unity and the struggle between matter and gravitational field.

Pushed to its extreme, Einstein defines matter ex negativo as everything but the gravitational
field, in perfect agreement with Aristotle’s law of the excluded middle. In other words, there is no
third between matter and gravitational field, a third is not given, tertium non datur.

Definition 3.1 (Matter and gravitational field). Let E(RMt) denote the expectation value of matter,
let E(Rgt) denote the expectation value of gravitational field, let REt denote everything. In general, it is

RE t ≡ E(RMt)+E(Rgt) (300)
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The relationship between matter and gravitational field can be normalized.

Definition 3.2 (Matter and gravitational field normalized). Again, let E(RMt) denote matter, let
E(Rgt) denote the gravitational field, let REt denote everything. The relationship between matter and
gravitational field is normalized as

E(RMt)

RE t
+

E(Rgt)

RE t
≡+1 (301)

Definition 3.3 (Energy, time and space). In our understanding, the space itself, as the set of all sets,
denoted by RSt, is determined as

RSt ≡ RU t × c2 ≡ E(RE t)+E(Rt t) (302)

while E(REt) is the expectation value of energy and E(Rtt) is the expectation value of time.

The relationship between energy and time can be normalized.

Definition 3.4 (Energy and time normalized). Again, let E(REt) denote the expectation value energy,
let E(Rtt) denote the expectation value time, let RSt denote space. The relationship between energy and
time is normalized as

E(RE t)

RSt
+

E(Rt t)

RSt
≡+1 (303)

Definition 3.5 (Energy and matter). Based on Einstein’s theory of special(Einstein, 1905c,d, 1908,
1935) relativity, the relationship between energy E(REt) and matter E(RMt) is given by

E(RE t)≡ E(RMt)× c2 ≡ E (0Mt + ∆Mt)× c2 (304)

while E(REt) is the expectation value of energy, E(0Mt) is the expectation value of mass as determined
by a co-moving observer, c is the speed of the light in vacuum.

However, matter itself as the other of the gravitational field is determined by the electromagnetic
field and ‘matter’ in the ordinary sense. The next figure might illustrate these basic relationships in
more detail.

Electromagnetic field bµν

Ordinary matter aµν

Energy tensor as the relationship between ordinary matter and electromagnetic field.

Again, Einstein himself elaborates on the fundamental relationship between matter in the narrower
sense and the electromagnetic field in detail. “Considered phenomenologically, this energy tensor is
composed of that of the electromagnetic field and of matter in the narrower sense. ” (see Einstein,
1923b, p. 93) or in greater detail:
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“But our investigations ... have shown that in ... the tensor of energy ... is included not only the
tensor of the energy of ponderable matter, but also that of the electromagnetic energy. ”

(see Einstein, 1923b, p. 87)

Vranceanu (see Vranceanu, 1936) himself and other too is elaborating on the same issue, too. In
point of fact, the energy tensor Tkl is treated by Vranceanu as the sum of two tensors, one of which is
due to the electromagnetic field (bµν ).

“On peut aussi supposer que le tenseur d’énergie Tkl soit la somme de deux tenseurs dont un dû
au champ électromagnétique . . . ” (see Vranceanu, 1936)

Vranceanu (see Vranceanu, 1936) and the stress-energy tensor.

Translated into English: ‘One can also assume that the energy tensor Tkl be the sum of two tensors,
one of which is due to the electromagnetic field.’In the light of these quite extensive information and
clarifications, the issue of energy, time and space can be taken one step further towards our goal, which
is to work out the fundamental relationship between these notions.

Theorem 3.9 (Energy, time and space). In general, it is

E(RX t)

c2 ≡ E (Rgt) (305)

Proof by direct proof. If the premise
+1 =+1︸       ︷︷       ︸
(Premise)

(306)

is true, then the following conclusion
+1 ≡+1 (307)

is also true, again the absence of any technical errors presupposed. The premise

+1 ≡+1 (308)

is true. We multiply equation 308 through by E(RE t) it is

E (RE t)≡ E (RE t) (309)
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Adding E(RX t), equation 309 becomes

E (RE t)+E (RX t)≡ E (RE t)+E (RX t) (310)

At this stage of the proof, the exact nature of the term E(RX t) is completely unknown. However, we
know for sure that the relationship E (RE t)+E (RX t) ≡ (RSt) is true. In other words, there is no third
between E( REt) and E( RXt), a third is not given, tertium non datur! Thus far, albeit clothed in other
words, energy is for sure a constituting part of space, but something else too. Therefore, equation 310
changes slightly. In general, it is,

E (RE t)+E (RX t)≡ (RSt) (311)

However, what could be the meaning of E(RX t)? Based on equation 302, equation 311 becomes

E (RE t)+E (RX t)≡ (RU t)× c2 (312)

Dividing equation 312 by c2, it is(
E(RE t)

c2

)
+

(
E(RX t)

c2

)
≡ (RU t) (313)

According to equation 300 it is RU t ≡ E(RMt)+E(Rgt). Equation 313 changes to(
E(RE t)

c2

)
+

(
E(RX t)

c2

)
≡ E (RMt)+E (Rgt) (314)

Based on equation 304, it is E(RMt)≡
E(RE t)

c2 . Equation 314 becomes

E (RMt)+

(
E(RX t)

c2

)
≡ E (RMt)+E (Rgt) (315)

Even if we do not expressly know what E(RXt) really is, what we know for sure is that E(RXt) is
determined by the expectation value of the gravitational field E(Rgt). In general, it is

E(RX t)

c2 ≡ E (Rgt) (316)

□

Theorem 3.10 (Energy, time and space II). Energy, time and space are deeply interrelated. It is

RE t
2 ≡ RSt

2 ×
(

1− Rt t

RSt

)
2 (317)

Proof by direct proof. In our understanding it is

RE t +Rt t ≡ RSt (318)
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Normalizing equation 318, it is
RE t

RSt
+

Rt t

RSt
≡ RSt

RSt
≡+1 (319)

Changing equation 319, it is

RE t ≡ RSt ×
(

1− Rt t

RSt

)
(320)

and at the end

RE t
2 ≡ RSt

2 ×
(

1− Rt t

RSt

)
2 (321)

□

Theorem 3.11 (Energy, time and space III). Energy, time and space are deeply interrelated. It is
equally

Rt t
2 ≡ RSt

2 ×
(

1− RE t

RSt

)
2 (322)

Proof by direct proof. In our understanding it is

RE t +Rt t ≡ RSt (323)

Normalizing equation 323, it is
RE t

RSt
+

Rt t

RSt
≡ RSt

RSt
≡+1 (324)

Changing equation 324, it is

Rt t ≡ RSt ×
(

1− RE t

RSt

)
(325)

and at the end

Rt t
2 ≡ RSt

2 ×
(

1− RE t

RSt

)
2 (326)

□

Theorem 3.12 (Energy, time and space IV). The relationship between energy, time and space finds its
most obvious expression mathematically in the equation(

RE t
2)+ (Rt t

2)≡ κ × RSt
2 (327)

Proof by direct proof. It is (
RE t

2
)
+
(

Rt t
2
)
≡
(

RE t
2
)
+
(

Rt t
2
)

(328)

Equation 328 becomes (see equation 321)(
RE t

2
)
+
(

Rt t
2
)
≡
(

RSt
2 ×
(

1− Rt t

RSt

)
2
)
+
(

Rt t
2
)

(329)
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Equation 329 becomes (see equation 326)

(
RE t

2
)
+
(

Rt t
2
)
≡
(

RSt
2 ×
(

1− Rt t

RSt

)
2
)
+

(
RSt

2 ×
(

1− RE t

RSt

)
2
)

(330)

Simplifying equation 330, it is

(
RE t

2
)
+
(

Rt t
2
)
≡
((

1− Rt t

RSt

)
2 +

(
1− RE t

RSt

)
2
)
×RSt

2 (331)

For better handling, we define mathematical identity

κ ≡
((

1− Rt t

RSt

)
2 +

(
1− RE t

RSt

)
2
)

(332)

In general, the relation between energy and time changes to

(
RE t

2
)
+
(

Rt t
2
)
≡ κ ×RSt

2 (333)

□

The following figure provides an overview over the basic relationships as given from the point of
view of special theory of relativity.

Table 5. Energy, time and space

Curvature
YES NO

YES 0Et
2

WEt
2

REt
2

Momentum
NO 0tt 2

Wtt 2
Rtt 2

0St
2

0St
2 κ ×RSt

2

Multiplying the relationships above by the metric tensor gµν of Einstein general relativity, it is
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Table 6. Energy, time and space and the four basic fields of nature

Curvature
YES NO

YES 0E t
2 ×gµν WE t

2 ×gµν RE t
2 ×gµν

Momentum
NO 0t t

2 ×gµν Wt t
2 ×gµν Rt t

2 ×gµν

0St
2 ×gµν 0St

2 ×gµν κ ×RSt
2 ×gµν

Table 6 does not guarantee from the outset neither the dimensional nor other compatibility with
Einstein’s theory of general relativity.

3.5. The equivalence of time and gravitational field

Theorem 3.13 (The equivalence of time and gravitational field). (Barukčić, 2011)

E(Rt t)≡ E (Rgt)× c2 (334)

Proof by direct proof. If the premise
+1 =+1︸       ︷︷       ︸
(Premise)

(335)

is true, then the following conclusion

E(Rt t)≡ E (Rgt)× c2 (336)

is also true, again the absence of any technical errors presupposed. The premise

+1 ≡+1 (337)

is true. We multiply equation 337 through by equation 303. It is

E(RE t)

RSt
+

E(Rt t)

RSt
≡+1 (338)

Equation 338 is rearranged further (see equation 301). It is,

E(RE t)

RSt
+

E(Rt t)

RSt
≡ E(RMt)

RU t
+

E(Rgt)

RU t
(339)

CAUSATION ISSN: 1863-9542 https://www.doi.org/10.5281/zenodo.5717335 Volume 17, Issue 9, 1–157

https://portal.issn.org/resource/ISSN/1863-9542
https://www.doi.org/10.5281/zenodo.5717335


77

We multiply equation 339 through by RSt. Equation 339 changes to

E(RE t)+E(Rt t)≡
(

RSt

RU t
×E(RMt)

)
+

(
RSt

RU t
×E(Rgt)

)
(340)

According to equation 302, it is c2 ≡ RSt

RU t
. Equation 340 changes to

E(RE t)+E(Rt t)≡
(

c2 ×E(RMt)
)
+
(

c2 ×E(Rgt)
)

(341)

Equation 341 simplifies (see equation 304) as

E(RE t)+E(Rt t)≡ E(RE t)+
(

c2 ×E(Rgt)
)

(342)

Simplifying equation 342, we obtain the equivalence of time and gravitational field as

E(Rt t)≡ E (Rgt)× c2 (343)

□

3.6. Time and gravitational field

Is there actually any relationship between time and gravitational field and if yes, what kind of
relationship could this be?

Theorem 3.14 (Time and gravitational field).

E(RX t)≡ E(Rt t) (344)

Proof by direct proof. If the premise
+1 =+1︸       ︷︷       ︸
(Premise)

(345)

is true, then the following conclusion

E(RX t)≡ E(Rt t) (346)

is also true, again the absence of any technical errors presupposed. The premise

+1 ≡+1 (347)

is true. We multiply equation 347 through by the gravitational field E(Rgt) . It is

E(Rgt)≡ E(Rgt) (348)
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Equation 316 has been able to provide clear evidence that there is a third between energy and space,
denoted as E(RXt), which is existing independent of any human mind as consciousness, objectively
and real. Equation 348 changes to

E(RX t)

c2 ≡ E (Rgt) (349)

and to
E(RX t)≡ E (Rgt)× c2 (350)

With the deepest regrets, we had to face the fact that equation 316 has not been able to provide any
evidence of the nature of E(RXt) itself. But equation 343 did provide a reliable evidence about the
nature of E(RXt). Based on equation 343, it is

E(RX t)≡ E(Rt t) (351)

Time is the unknown third between energy and space which is existing independent of any human mind
as consciousness, objectively and real.

□

Theorem 3.15 (The equivalence of time and gravitational field). The equivalence of time and grav-
itational field has been proof several times. In this publication, we will choose additionally a new
approach to this issue. The equivalence of time and gravitational field is given from the point of view
of a stationary observer R by the equation

Rt t ≡ Rgt × c2 (352)

and from the point of view of a co-moving observer 0 by the relationship

0t t ≡ 0gt × c2 (353)

Proof by direct proof. In general, it is (see equations 265, 240 226 and 287)

1− v2

c2 ≡ 0t t
2

Rt t2
≡ 0E t

2

RE t2
≡ 0gt

2

Rgt2
(354)

Dividing equation 354 by c4 it is

0t t
2

c4 × 1

Rt t2
≡ 0E t

2

c4 × 1

RE t2
≡ 0gt

2

1
× 1

c4 ×Rgt2
(355)

Multiplying equation 355 by c4 it is

0t t
2

c4 × c4

Rt t2
≡ 0E t

2

c4 × c4

RE t2
≡ 0gt

2 × c4

1
× 1

c4 ×Rgt2
(356)

Equation 356 is simplified as
0t t

2

Rt t2
≡ 0mt

2

RMt2
≡ 0gt

2 × c4

Rgt2 × c4 (357)
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Equation before becomes
0t t

2

Rt t2
≡ 0gt

2 × c4

Rgt2 × c4 (358)

Taking the square root of equation 358, it is

0t t

Rt t
≡ 0gt × c2

Rgt × c2 (359)

The equivalence of time and gravitational field is given from the point of view of a co-moving observer
0 by the relationship

0t t ≡ 0gt × c2 (360)

and from the point of view of a stationary observer R by the equation

Rt t ≡ Rgt × c2 (361)

Equation 229 becomes (see equation 361)

(RSt)≡+(RE t)+
(

Rgt × c2
)
≡+(RE t)+(Rt t) (362)

□

3.7. The scalar of space S

It is appropriate to consider that invariants (scalars) are tensors of rank 0 (Einstein, 1923b, p. 13).

Theorem 3.16 (The scalar RSt). In general, the Scalar RSt is determined as

κ × RSt
2 ≡ R

D
(363)

while R is the Ricci curvature scalar (see definition 2.44), D is defined (see definition 50) as gµν ×
gµν ≡ D and κ × RSt

2 might denote even something like (the ‘density’of) space.

Proof by direct proof. If the premise
+1 =+1︸       ︷︷       ︸
(Premise)

(364)

is true, then the conclusion
R ≡

(
κ ×RSt

2
)
×D (365)

is also true, the absence of any technical errors presupposed. The premise or respectively axiom I

+1 ≡+1 (366)

is true. Multiplying this premise (i.e. axiom I) by the Ricci tensor Rµν , it is

Rµν ≡ Rµν (367)
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The general form of the Ricci tensor is determined (see equation 152) as Rµν ≡
(
κ ×RSt

2)×gµν which
is substituted into equation 367.

Rµν ≡
(

κ ×RSt
2
)
×gµν (368)

We multiply equation 368 through by the inverse metric tensor gµν . It is

Rµν ×gµν ≡
(

κ ×RSt
2
)
×gµν ×gµν (369)

In general, the Ricci scalar R is determined as

R ≡
(

κ ×RSt
2
)
×D ≡ (κ ×D)×RSt

2 (370)

In general, the scalar S is determined without an exception as

κ ×RSt
2 ≡ R

D
(371)

□

3.8. The parameter x3

It can be assumed that special theory of relativity relies more or less on the gravitational field, while
Einstein’s general theory of relativity is working with the gravitational potential.

Theorem 3.17 (The scalar of sapce and the Ricci scalar). Under conditions where an additional cor-
rection factor x3 is needed to assure complete compatibility with Einstein’s general theory of relativity,
it is

x3 ×κ × RSt
2 ≡ R

D
(372)

while R is the Ricci curvature scalar (see definition 2.44), D is defined (see definition 50) as gµν ×
gµν ≡ D and x3 ×κ × RSt

2 might denote even something like (the ‘density’of) space.

Proof by direct proof. If the premise
+1 =+1︸       ︷︷       ︸
(Premise)

(373)

is true, then the conclusion
R ≡

(
x3 ×κ ×RSt

2
)
×D (374)

is also true, the absence of any technical errors presupposed. The premise or respectively axiom I

+1 ≡+1 (375)

is true. Multiplying this premise (i.e. axiom I) by the Ricci tensor Rµν , it is

Rµν ≡ Rµν (376)
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The general form of the Ricci tensor is determined (see equation 152) as Rµν ≡
(
x3 ×κ ×RSt

2)×gµν

which is substituted into equation 367.

Rµν ≡
(

x3 ×κ ×RSt
2
)
×gµν (377)

We multiply equation 368 through by the inverse metric tensor gµν . It is

Rµν ×gµν ≡
(

x3 ×κ ×RSt
2
)
×gµν ×gµν (378)

In general, the Ricci scalar R is determined as

R ≡
(

x3 ×κ ×RSt
2
)
×D ≡ (x3 ×κ ×D)×RSt

2 (379)

The scalar S is determined as
x3 ×κ ×RSt

2 ≡ R
D

(380)

There are circumstances where x3 = 1. The following table 7 might illustrate this situation.

Table 7. Energy, time and space and the four basic fields of nature

Curvature
YES NO

YES
(
x3 × 0E t

2 ×gµν

) (
x3 ×WE t

2 ×gµν

) (
x3 ×RE t

2 ×gµν

)
Momentum

NO
(
x3 × 0t t

2 ×gµν

) (
x3 ×Wt t

2 ×gµν

) (
x3 ×Rt t

2 ×gµν

)
(
x3 × 0St

2 ×gµν

) (
x3 × 0St

2 ×gµν

) (
x3 ×κ ×RSt

2 ×gµν

)

It is feasible that in exceptional circumstances the following relationships might hold true:

x3 ×κ ×RSt
2 ≡ R

D
(381)

and at the end that
x3 ≡

R
D×κ ×RSt2

(382)

□

However, even the relationship

x3 ×κ ×RSt
2 ≡ R

D
≡ Ψ (383)
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is possible too. The complex conjugate Ψ*, in order to achieve normalization like Ψ×Ψ* ≡ +1, can
follow as,

Ψ
* ≡ 1

x3 ×κ ×RSt2
≡ D

R
(384)

However, these thoughts are purely theoretical and of provisional in nature.

3.9. The parameter x5 I

Theorem 3.18 (The parameter x5 I ). In general, it is

RE t
2 ≡ x5 ×

((
R
D

)
−
(

R
2

)
+Λ

)
≡ x5 ×

(
8×π × γ ×T

c4 ×D

)
≡ x5 × dE t

2 (385)

Proof by direct proof. The premise
+1 ≡+1 (386)

is true. In the following, we rearrange the premise before. We obtain

RE t
2 ≡ RE t

2 (387)

Equation 387 changes (see equation 154). It is

RE t
2 ≡ RE t

2 ×1 ≡ RE t
2 ×

(
R
D

)
−
(

R
2

)
+Λ(

R
D

)
−
(

R
2

)
+Λ

(388)

and equally

RE t
2 ≡ RE t

2((
R
D

)
−
(

R
2

)
+Λ

) ×
((

R
D

)
−
(

R
2

)
+Λ

)
(389)

In our understanding, it is x5 ≡
RE t

2((
R
D

)
−
(

R
2

)
+Λ

) . Equation 389 becomes

RE t
2 ≡ x5 ×

((
R
D

)
−
(

R
2

)
+Λ

)
≡ x5 ×

(
8×π × γ ×T

c4 ×D

)
≡ x5 × dE t

2 (390)

□

However, another straightforward consequence of equation 390 is the relationship

(
8×π × γ ×T

c4 ×D

)
≡
((

R
D

)
−
(

R
2

)
+Λ

)
≡ RE t

2

x5
≡ dE t

2 (391)
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3.10. The parameter x5 II

Theorem 3.19 (The term x5). There are circumstances under which x5 is determined as

x5 ≡
D×κ × RSt

2

R
(392)

Proof by direct proof. The premise
+1 ≡+1 (393)

is true. Multiplying by Gµν , it is
Gµν ≡ Gµν (394)

or
Gµν +

(
Λ×gµν

)
≡ Gµν +

(
Λ×gµν

)
(395)

and equally

Rµν −
(

R
2
×gµν

)
+
(
Λ×gµν

)
≡ Gµν +

(
Λ×gµν

)
(396)

Einstein’s field equations are defined as Gµν +
(
Λ×gµν

)
=

(
8×π × γ

c4

)
× T µν Equation 396 be-

comes

Rµν −
(

R
2
×gµν

)
+
(
Λ×gµν

)
≡
(

8×π × γ

c4

)
×T µν (397)

Equation 397 changes to((
8×π × γ

c4

)
×T µν

)
+

(
R
2
×gµν

)
−
(
Λ×gµν

)
≡ Rµν (398)

In our understanding it is(
fa2 ×gµν

)
+
(

fb2 ×gµν

)
+
(

fc2 ×gµν

)
+
(

fd2 ×gµν

)
≡ Rµν (399)

In other words, equation 398 is equivalent (see equation 581) with the relationship((
8×π × γ ×T

c4 ×D

)
×gµν

)
+

(
R
2
×gµν

)
−
(
Λ×gµν

)
≡ R

D
×gµν

≡
(

fa2 ×gµν

)
+
(

fb2 ×gµν

)
+
(

fc2 ×gµν

)
+
(

fd2 ×gµν

) (400)

Multiplying the Einstein field equation (see equation 400) by the term x5, it is(
x5 ×

(
8×π × γ ×T

c4 ×D

)
×gµν

)
+

(
x5 ×

R
2
×gµν

)
−
(
x5 ×Λ×gµν

)
≡ x5 ×

R
D
×gµν

≡
(

x5 × fa2 ×gµν

)
+
(

x5 × fb2 ×gµν

)
+
(

x5 × fc2 ×gµν

)
+
(

x5 × fd2 ×gµν

) (401)
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These relationships are illustrated by table 8.

Table 8. Energy, time and space and the four basic fields of nature

Curvature
YES NO

YES
(
x5 × fa2 ×gµν

) (
x5 × fb2 ×gµν

) (
x5 × dE t

2 ×gµν

)
Momentum

NO
(
x5 × fc2 ×gµν

) (
x5 × fd2 ×gµν

) (
x5 × dE2 ×gµν

)
(
x5 × dG2 ×gµν

) (
x5 × dG2 ×gµν

) (
x5 ×

R
D
×gµν

)

In our understanding, it is

0E t
2 ×gµν ≡

(
x5 × fa2 ×gµν

)
(402)

and

0t t
2 ×gµν ≡

(
x5 × fc2 ×gµν

)
(403)

and

WE t
2 ×gµν ≡

(
x5 × fb2 ×gµν

)
(404)

and

Wt t
2 ×gµν ≡

(
x5 × fd2 ×gµν

)
(405)

Furthermore, it is

Rt t
2 ×gµν ≡

(
x5 ×

(
R
2
−Λ

)
×gµν

)
(406)

and

RE t
2 ×gµν ≡

(
x5 ×

(
8×π × γ ×T

c4 ×D

)
×gµν

)
≡ x5 ×

(
R
D
−
(

R
2

)
+(Λ)

)
×gµν ≡ x5 × dE t

2 ×gµν

(407)
Taking the trace of equation 401, it is(

x5 ×
(

8×π × γ ×T
c4 ×D

)
×gµν ×gµν

)
+

(
x5 ×

R
2
×gµν ×gµν

)
−
(
x5 ×Λ×gµν ×gµν

)
≡ x5×

R
D
×gµν ×gµν

(408)
or (see equation 50)(

x5 ×
(

8×π × γ ×T
c4 ×D

)
×D

)
+

(
x5 ×

R
2
×D

)
− (x5 ×Λ×D)≡ x5 ×

R
D
×D (409)
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Equation 409 simplifies as(
x5 ×

(
8×π × γ ×T

c4

))
+

(
x5 ×

R
2
×D

)
− (x5 ×Λ×D)≡ x5 ×

R
1

(410)

Dividing equation 410 by the term D, it isx5 ×
(

8×π × γ ×T
c4 ×D

)
︸                   ︷︷                   ︸

dEt2

+

(
x5 ×

R
2

)
− (x5 ×Λ)≡ x5 ×

R
D

(411)

From equation 411 follows that

RE t
2 ≡ x5 × dE t

2 ≡ x5 ×
(

R
D
−
(

R
2

)
+(Λ)

)
(412)

Under conditions where

x5 ×
R
D

≡ κ ×RSt
2 (413)

it is

x5 ≡
D×κ ×RSt

2

R
(414)

□

Equation 414 does not exclude circumstances (see equation 371) where x5 = +1. Under these
conditions, it is

R ≡ D×κ ×RSt
2 (415)

It is worthwhile noting that
x3 × x5 ≡+1 (416)

3.11. The geometrical form of the stress-energy tensor of the electromagnetic field

Theorem 3.20 (The geometrical form of the stress-energy tensor of the electromagnetic field bµν ).
The geometrization of the stress-energy tensor of the electromagnetic fields has been left behind by
Einstein (Einstein, 1916) himself as an unsolved problem. Besides of the many trials to extend the
geometry of general relativity even to the electromagnetic field, the conceptual differences between the
geometrized gravitational field and the classical Maxwellian theory of the electromagnetic filed were
so far insurmountable.

CLAIM.
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In general, the completely geometrical form of the stress-energy momentum tensor of the electro-
magnetic field bµν depending upon metric signature is given by

bµν ≡
(
(4×Fc)+(D×Fe)

4×π ×4×D

)
×gµν (417)

Proof by modus ponens. If the premise
+1 =+1︸       ︷︷       ︸
(Premise)

(418)

is true, then the conclusion

bµν ≡
(
(4×Fc)+(D×Fe)

4×π ×4×D

)
×gµν

≡ b×gµν

(419)

is also true, the absence of any technical errors presupposed. The premise

(+1) = (+1) (420)

is true. Multiplying this premise by the stress-energy momentum tensor of the electromagnetic field
bµν , we obtain

(+1)×bµν ≡ (+1)×bµν (421)

or
bµν ≡ bµν (422)

The tensor bµν denotes the trace-less, symmetric stress-energy tensor of the (source-free) electromag-
netic field and is defined (see Lehmkuhl, 2011, p. 13) (depending upon metric signature (see
Hughston and Tod, 1990, p. 38)) as

bµν ≡
(

1
4×π

×
((

Fµ c ×Fν
c)+(1

4
×gµν ×Fde ×Fde

)))
(423)

A completely geometrized, co-variant stress-energy tensor of the electromagnetic field expressed under
conditions of D = 4 space-time dimensions has already been published (theorem 3.1, equation 80
Barukčić, 2020a, p. 157). Rearranging equation 423 in connection with equation 142 and according to
the definition 2.65 it is

bµν ≡
(

1
4×π

×
((

Fµ c ×Fν d ×gcd
)
+

(
1
4
×gµν ×Fde ×Fde

)))
(424)

Rearranging equation 424, it is

bµν ≡ 1
4×π

×
((

4×D
4×D

×
(

Fµ c ×Fν d ×gcd
))

+

((
D

4×D
×Fde ×Fde

)
×gµν

))
(425)

where D denotes the number of space-time dimensions (see definition 2.12, equation 50). Rearranging
the equation 425 further, we obtain
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bµν ≡ 1
4×π ×4×D

×
((

4×D×
(

Fµ c ×Fν d ×gcd
))

+
(

D×
(

Fde ×Fde
)
×gµν

))
(426)

Under conditions where gµν ×gµν ≡ D (see definition 2.12, equation 50) equation 426 simplifies as

bµν ≡ 1
4×π ×4×D

×
((

4×
(
gµν ×gµν

)
×
(

Fµ c ×Fν d ×gcd
))

+
(

D×
(

Fde ×Fde
)
×gµν

))
(427)

or as

bµν ≡ 1
4×π ×4×D

×
(((

4× (gµν)×
(

Fµ c ×Fν d ×gcd
))

×gµν

)
+
(

D×
(

Fde ×Fde
)
×gµν

))
(428)

A further simplification of the relationship before (equation 428) yields the stress-energy momentum
tensor of the electromagnetic field bµν determined only by the metric tensor of general relativity gµν

as

bµν ≡ 1
4×π ×4×D

×
((

4×
(

Fµ c ×gµν ×gcd ×Fν d

))
+
(

D×
(

Fde ×Fde
)))

×gµν (429)

However, the term
((

Fµ c ×gµν ×gcd ×Fν d
)
+
(
Fde ×Fde)) of the equation 429 can be simplified

further. For the first, we define (see definition 2.63, equation 170) the invariant

Fe ≡ Fde ×Fde (430)

Furthermore, for an order-2 tensor, twice multiplying by the contra-variant metric tensor and con-
tracting (see Einstein, 1916, p. 790) in different indices (see Kay, 1988) raises each index. In
other (Jackson, 1975) words, according to Einstein (see Einstein, 1916, p. 790), it is in general

F( 1 3
µ c ) ≡ g(

1 2
µ ν )× g(

3 4
c d )×F( ν d

2 4 )
or more professionally Fµ c ≡ gµν ×gcd ×Fν d (see definition

2.17, equation 62) which simplifies equation 429 as

bµν ≡ 1
4×π ×4×D

×
((

4×
(
Fµ c ×Fµ c))− (D× (Fe))

)
×gµν (431)

We define (see definition 2.63, equation 170) the invariant

Fc ≡ Fµ c ×Fµ c (432)

Equation 431 can be simplified further. It is

bµν ≡ 1
4×π ×4×D

× ((4× (Fc))− (D× (Fe)))×gµν (433)

or

bµν ≡
(

1
4×π

×
((

4×Fc

4×D

)
+

(
D×Fe

4×D

)))
×gµν (434)
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and finally as

bµν ≡
(
(4×Fc)+(D×Fe)

4×π ×4×D

)
×gµν (435)

Under conditions of D space-time dimensions where(
Fµ c ×Fµ c)≡ (Fde ×Fde

)
≡ Fc ≡ Fe (436)

equation 434 simplifies as

bµν ≡
(

1
4×π

×
((

4×Fe

4×D

)
+

(
D×Fe

4×D

)))
×gµν (437)

or as

bµν ≡
(

(4+D)×Fe

4×π ×4×D

)
×gµν (438)

In general, we define the scalar or invariant b as

b ≡
(
(4×Fc)+(D×Fe)

4×π ×4×D

)
(439)

The 2-index stress-energy momentum tensor of the electromagnetic field geometrized completely, is
given by

bµν ≡ b×gµν (440)

In other words, our conclusion is true.
□

Remark 3.1. Under the circumstances before (see definition 2.63, equation 170), the unification of the
strong force and weak force is supported and demanded by the stress energy tensor of ordinary matter
aµν as

aµν ≡ Eµν −bµν

≡
((

8×π × γ ×T
c4 ×D

)
−
(
(4×Fc)+(D×Fe)

4×π ×4×D

))
×gµν

(441)

Theorem 3.21 (The geometrical form of the stress energy tensor of the electromagnetic field WEµν ).
The geometrical form of the stress energy tensor of the electromagnetic field, denoted by

bµν ≡ b×gµν

≡ fb2 ×gµν

≡
(

v2

c2

)
×
(

R
D
−
(

R
2

)
+(Λ)

)
×gµν

≡
(

v2

c2

)
×
(

8×π × γ ×T
c4 ×D

)
×gµν

≡ WEµν

(442)
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Proof by direct proof. The premise
+1 ≡+1 (443)

is true. Multiplying equation 443 by the energy of the electromagnetic wave,WEt
2, it is

WE t
2 ≡ WE t

2 (444)

Dividing equation 444 by the total energy of a system, REt
2, it is

WE t
2

RE t2
≡ WE t

2

RE t2
(445)

In accordance with equation 254, equation 445 becomes

WE t
2

RE t2
≡ v2

c2 (446)

Equation 446 changes to (see equation 412)

WE t
2

x5 ×
(

R
D
−
(

R
2

)
+(Λ)

) ≡ v2

c2 (447)

and to
WE t

2

x5
≡
(

v2

c2

)
×
(

R
D
−
(

R
2

)
+(Λ)

)
(448)

Multiplying equation 448 by the metric tensor gµν of general theory of relativity, it is

WE t
2

x5
×gµν ≡

(
v2

c2

)
×
(

R
D
−
(

R
2

)
+(Λ)

)
×gµν (449)

As illustrated by table 8, it is
WE t

2 ×gµν ≡
(
x5 ×b×gµν

)
(450)

and
WE t

2

x5
×gµν ≡

(
b×gµν

)
(451)

Substituting the result of the equation 451 into equation 449, the general form of the stress energy
tensor of the electromagnetic field is given by

bµν ≡ b×gµν

≡ fb2 ×gµν

≡
(

v2

c2

)
×
(

R
D
−
(

R
2

)
+(Λ)

)
×gµν

≡
(

v2

c2

)
×
(

8×π × γ ×T
c4 ×D

)
×gµν

≡ WEµν

(452)

□

CAUSATION ISSN: 1863-9542 https://www.doi.org/10.5281/zenodo.5717335 Volume 17, Issue 9, 1–157

https://portal.issn.org/resource/ISSN/1863-9542
https://www.doi.org/10.5281/zenodo.5717335


90

Theorem 3.22 (The geometrical form of the stress energy tensor of the electromagnetic field WEµν I).
In general, it is

b×gµν ≡
(

1
4×π ×D

×
((

Fµ c ×Fµ c)+(D
4
×Fde ×Fde

)))
×gµν (453)

Proof by direct proof. At the beginning of this theorem, it is necessary and appropriate that an impor-
tant point is being made about the theoretical starting point. All the subsequent content of this theorem
stems from premise (i.e. axiom)

+1 ≡+1 (454)

Rearranging the equation before, it is

b×gµν ≡ b×gµν (455)

Equation 455 changes (see equation 142, p. 38) slightly to

b×gµν ≡
(

1
4×π

×
((

Fµ c ×Fν
c)+(1

4
×gµν ×Fde ×Fde

)))
(456)

It is gµν ×gµν ≡ D (see equation 50, p. 16), where D might denote the number of space-time dimen-
sions. Equation 456 becomes

b×gµν ≡
(

1
4×π

×
((

Fµ c ×Fν
c)+(1

4
×gµν ×Fde ×Fde

)))
× D

D
(457)

or

b×gµν ≡
(

1
4×π ×D

×
((

Fµ c ×Fν
c)+(1

4
×gµν ×Fde ×Fde

)))
×D (458)

In more detail, equation 458 changes to

b×gµν ≡
(

1
4×π ×D

×
((

Fµ c ×Fν
c)+(1

4
×gµν ×Fde ×Fde

)))
×gµν ×gµν (459)

or to

b×gµν ≡

(
1

4×π
×

((
Fµ c ×Fν

c

D

)
+

(
gµν ×Fde ×Fde

4×D

)))
×gµν ×gµν (460)

and to

b×gµν ≡

(
1

4×π
×

((
Fµ c ×Fν

c ×gµν

D

)
+

(
gµν ×gµν ×Fde ×Fde

4×D

)))
×gµν (461)

Rearranging equation 461, it is

b×gµν ≡

(
1

4×π ×D
×

((
Fµ c ×Fν

c ×gµν
)
+

(
gµν ×gµν ×Fde ×Fde

4

)))
×gµν (462)

CAUSATION ISSN: 1863-9542 https://www.doi.org/10.5281/zenodo.5717335 Volume 17, Issue 9, 1–157

https://portal.issn.org/resource/ISSN/1863-9542
https://www.doi.org/10.5281/zenodo.5717335


91

It is Fν
c ×gµν ≡ Fµ c. Additionally, it is gµν ×gµν ≡ D. Equation 462 becomes

b×gµν ≡
(

1
4×π ×D

×
((

Fµ c ×Fµ c)+(D×Fde ×Fde

4

)))
×gµν (463)

□

Theorem 3.23 (The geometrical form of the stress energy tensor of the electromagnetic field WEµν

II). In general, conditions are thinkable where geometrical form of the stress energy tensor of the
electromagnetic field follows as

b×gµν ≡
(
(4+D)×F1

4×4×π ×D

)
×gµν (464)

Proof by direct proof. In line with the equation 463, it is

b×gµν ≡
(

1
4×π ×D

×
((

Fµ c ×Fµ c)+(D
4
×Fde ×Fde

)))
×gµν (465)

Two invariant Lorentz scalars of electromagnetic fields (i.e. electromagnetic invariants) are discussed
in literature (Escobar and Urrutia, 2014). The first quadratic Lorentz invariant (see equation 2.63, p.
46), denoted as F1, is determined as F1 ≡ Fde ×Fde. Among the many references in the literature
related to invariant Lorentz scalars, at least to the best of our knowledge, equation 465 becomes

b×gµν ≡
(

1
4×π ×D

×
((

Fµ c ×Fµ c)+(D
4
×F1

)))
×gµν (466)

Under conditions where F1 ≡ Fde×Fde ≡ Fµ c×Fµ c (see equation 46, p. 15), equation 466 simpli-
fies further and becomes

b×gµν ≡
(

1
4×π ×D

×
(
(F1)+

(
D
4
×F1

)))
×gµν (467)

or

b×gµν ≡
(

1
4×π ×D

×
((

4×F1

4

)
+

(
D
4
×F1

)))
×gµν (468)

or

b×gµν ≡
(

1
4×π ×D

×
((

4+D
4

)
×F1

))
×gµν (469)

or in general

b×gµν ≡
(
(4+D)×F1

4×4×π ×D

)
×gµν (470)

□
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Theorem 3.24 (The geometrical form of the stress energy tensor of the electromagnetic field). Theoret-
ically, it appears to be that there are conditions where the stress-energy tensor of the electromagnetic
field takes the form

b×gµν ≡
(

h̄×F1

h×D

)
×gµν (471)

Proof by direct proof. In line with the equation 467, it is

b×gµν ≡
(

1
4×π ×D

×
(
(F1)+

(
D
4
×F1

)))
×gµν (472)

However, the concrete form of stress-energy tensor of the electro-magnetic field (see equation 467)
follows under conditions of D=4 space-time dimension of general theory of relativity. Rearranging
equation 472, we obtain

b×gµν ≡
(

1
4×π ×D

×
(
(F1)+

(
4
4
×F1

)))
×gµν (473)

or

b×gµν ≡
(

1
4×π ×D

× ((F1 +F1))

)
×gµν (474)

or

b×gµν ≡
(

1
4×π ×D

× (2×F1)

)
×gµν (475)

or

b×gµν ≡
(

F1

2×π ×D

)
×gµν (476)

In general, it is
1
2
≡ h̄×π

h
(477)

where h̄ is known as the reduced (Dirac, 1926) Planck constant, as the quantum of angular momentum.
Later, Dirac wrote: “In Order that the theory may agree with experiment, we must take h̄ equal to
h/2π , where h is the universal constant that was introduced by Planck, known as Planck’s constant.
”(see also Dirac, 1947, p. 87). Nevertheless, equation 476 simplifies further. It is

b×gµν ≡
(

h̄×π ×F1

h×π ×D

)
×gµν (478)

Theoretically, it appears to be possible to express the stress-energy tensor of the electromagnetic field
in the form

b×gµν ≡
(

h̄×F1

h×D

)
×gµν (479)

□
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3.12. The geometrical form of the tensor of ordinary matter 0Eµν

Theorem 3.25 (The geometrical form of the tensor of ordinary matter 0Eµν . The geometric form of
the stress-energy tensor of ordinary matter, denoted by 0Eµν ≡ fa2 ×gµν , is given as

aµν ≡ a×gµν

≡ fa2 ×gµν

≡
(

1− v2

c2

)
×
(

8×π × γ ×T
c4 ×D

)
×gµν

≡
(

1− v2

c2

)
×
(

R
D
−
(

R
2

)
+(Λ)

)
×gµν

≡ 0Eµν

(480)

Proof by direct proof. The premise
+1 ≡+1 (481)

is true. In the following, we rearrange the premise. After few steps we obtain (see equation 240)

0E t
2

RE t2
≡
(

1− v2

c2

)
(482)

According to equation 412, the relationship before (equation 482) becomes

0E t
2

x5 ×
(

R
D
−
(

R
2

)
+(Λ)

) ≡
(

1− v2

c2

)
(483)

and changes to
0E t

2

x5
≡
(

1− v2

c2

)
×
(

R
D
−
(

R
2

)
+(Λ)

)
(484)

According to equation 402 it is
0E t

2

x5
×gµν ≡ fa2 ×gµν (485)

and
0E t

2

x5
≡ fa2 (486)

Equation 484 becomes

fa2 ≡
(

1− v2

c2

)
×
(

R
D
−
(

R
2

)
+(Λ)

)
(487)

In general, the geometric form of the stress-energy tensor of ordinary matter, denoted by fa2 ×gµν , is
given as (see equation 581)

fa2 ×gµν ≡
(

1− v2

c2

)
×
(

8×π × γ ×T
c4 ×D

)
×gµν ≡ 0Eµν (488)
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and equally (see equation 581)

fa2 ×gµν ≡
(

1− v2

c2

)
×
(

R
D
−
(

R
2

)
+(Λ)

)
×gµν ≡ 0Eµν (489)

□

3.13. The geometrical form of the tensor 0tµν

Theorem 3.26 (The geometrical form of the tensor 0tµν . The geometrical form of the tensor 0tµν

denoted by fc2 ×gµν ≡ 0tµν , is given as

cµν ≡ c×gµν ≡ fc2 ×gµν ≡
(

1− v2

c2

)
×
((

R
2

)
− (Λ)

)
×gµν ≡ 0tµν (490)

In this context, fc2 should not be mismatched with c, the speed of the light in vacuum.

Proof by direct proof. The premise
+1 ≡+1 (491)

is true. In the following, we rearrange the premise. After few steps we obtain (see equation 265)

0t t
2

Rt t2
≡
(

1− v2

c2

)
(492)

According to equation 406, the relationship before (equation 492) becomes

0t t
2

x5 ×
((

R
2

)
− (Λ)

) ≡
(

1− v2

c2

)
(493)

and changes to
0t t

2

x5
≡
(

1− v2

c2

)
×
((

R
2

)
− (Λ)

)
(494)

According to equation 403 it is
0t t

2

x5
×gµν ≡ fc2 ×gµν (495)

and
0t t

2

x5
≡ fc2 (496)

Equation 494 becomes

fc2 ≡
(

1− v2

c2

)
×
((

R
2

)
− (Λ)

)
(497)
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In general, the tensor fc2 ×gµν is given as

fc2 ×gµν ≡
(

1− v2

c2

)
×
((

R
2

)
− (Λ)

)
×gµν ≡ 0tµν (498)

□

3.14. The geometrical form of the tensor Wtµν

Theorem 3.27 (The geometrical form of the tensor Wtµν . The geometrical form of the tensor Wtµν

denoted by fd2 ×gµν ≡ Wtµν , is given as

dµν ≡ d ×gµν ≡ fd2 ×gµν ≡
(

v2

c2

)
×
((

R
2

)
− (Λ)

)
×gµν ≡ Wtµν (499)

Proof by direct proof. The premise
+1 ≡+1 (500)

is true. In the following, we rearrange the premise. After few steps we obtain (see equation 271)

Wt t
2

Rt t2
≡
(

v2

c2

)
(501)

According to equation 406, the relationship before (equation 501) becomes

Wt t
2

x5 ×
((

R
2

)
− (Λ)

) ≡
(

v2

c2

)
(502)

and changes to
Wt t

2

x5
≡
(

v2

c2

)
×
((

R
2

)
− (Λ)

)
(503)

According to equation 405 it is
Wt t

2

x5
×gµν ≡ fd2 ×gµν (504)

and
Wt t

2

x5
≡ fd2 (505)

Equation 503 becomes

fd2 ≡
(

v2

c2

)
×
((

R
2

)
− (Λ)

)
(506)

In general, the tensor fd2 ×gµν is given as

fd2 ×gµν ≡
(

v2

c2

)
×
((

R
2

)
− (Λ)

)
×gµν ≡ Wtµν (507)

□
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Einstein field equations becomes

Rµν −
(

R
2
×gµν

)
+
(
Λ×gµν

)
≡ Rµν − 0tµν −Wtµν ≡ 0Eµν −WEµν (508)

From equation 508 follows that

WEµν ≡
(

R
2
×gµν

)
−Wtµν ≡ 0tµν +

(
Λ×gµν

)
(509)

3.15. Ricci tensor geometrized

In general relativity, it is common to present the Riemann and Ricci tensors by the Christoffel
symbols. However, Christoffel symbols are given through the metric tensor itself. Therefore, giving
the Ricci tensor while using the metric tensor explicitly, is theoretically possible and necessary.

Theorem 3.28. The completely geometrized form of the Ricci tensor Rµν is determined by the equation

x4 ≡
R
D

(510)

Proof by direct proof. The fundamental principles of what we understand to be sustainable for present-
ing the Ricci tensor while using the metric tensor explicitly, is the generally not to be rejected condition
that

(x4)×gµν ≡ Rµν (511)

while x4 might denote any possible scalar of currently unknown nature. It is therefore the task to solve
the issue of which nature x4 could be. We multiply equation 511 through by the inverse metric tensor
gµν . It is

(x4)×gµν ×gµν ≡ Rµν ×gµν (512)

or (see equation 50)
x4 ×D ≡ R (513)

The unknown entity x4, completely independent of its own specific inner structure, is determined by
the relationship

x4 ≡
R
D

(514)

□

3.16. Ricci tensor completely geometrized

Theorem 3.29 (Ricci tensor completely geometrized). The completely geometrized form of the Ricci
tensor Rµν is determined by the equation

Rµν ≡
(

R
D

)
×gµν (515)
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Proof by direct proof. The complete geometrization of the Ricci tensor Rµν is expressed by the general
validity of the relationship (see equation 511)

Rµν ≡ (x4)×gµν (516)

However, based on equation 514 it is x4 ≡ R
D

. Equation 516 changes accordingly. The Ricci tensor
Rµν given completely through the metric tensor gµν does not remain before us as the unknown and
follows as

Rµν ≡
(

R
D

)
×gµν (517)

□

Theorem 3.30. The correction factor x1 is given as

x1 ≡

(
R
D
− R

2
+Λ

)
(RE t2)

(518)

Proof by direct proof. In general, to assure compatibility with Einstein’s general relativity, it is

x1 ×
(

RE t
2
)
≡
(

R
D
− R

2
+Λ

)
≡ dE t

2 (519)

The correction factor is given as

x1 ≡

(
R
D
− R

2
+Λ

)
(RE t2)

≡ dE t
2

RE t2
(520)

□

Theorem 3.31. The correction factor x2 is given as

x2 ≡

(
R
2
−Λ

)
(Rt t2)

(521)

Proof by direct proof. In general, to assure compatibility with Einstein’s general relativity, it is

x2 ×
(

Rt t
2
)
≡
(

R
2
−Λ

)
≡ dt t

2 (522)

The correction factor is given as

x2 ≡

(
R
2
−Λ

)
(Rt t2)

≡ dt t
2

Rt t2
(523)

□
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Theorem 3.32. The Einstein scalar d Gt
2 is given as,

(
dGt

2)≡ (R
D
− R

2

)
(524)

Proof by direct proof. In general, it is and has to be that(
dGt

2
)
×gµν ≡

(
R
D
− R

2

)
×gµν ≡ Gµν (525)

We multiply equation 525 through by the inverse metric tensor gµν . It is(
dGt

2
)
×gµν ×gµν ≡

(
R
D
− R

2

)
×gµν ×gµν (526)

Equation 526 changes to (
dGt

2
)
×D ≡

(
R
D
− R

2

)
×D (527)

The Einstein scalar d Gt
2 is given as (

dGt
2
)
≡
(

R
D
− R

2

)
(528)

□

Remark 3.2. In this publication, the notions G and d Gt
2 are used interchangeably. However, it is

clear to us that conditions were (
dGt

2)≡ (R
D
− R

2

)
≡ 0 (529)

needed to be investigated in detail. One logical consequence of such a nature given possibility is that

R
D

≡ R
2

(530)

To say it with the painfully loud voice of the infinitely dark and empty, under conditions of D=2 and
lower space-time dimensions, there is no mass. In contrast to such a manifold, nowadays, we can find
mass or something concrete everywhere around us. That is to say, mass itself must have developed
and is developing somehow from the state of a world of 2 or fewer dimensions to today’s number of
dimensions. The key question is, therefore, does and how does a part of the energy of a 2 dimensional
world or manifold (i.e. determined by particles without mass) will pass over into the state of mass.
To get to the heart of the issue, is there a wanderer between different worlds, something similar to the
Higgs mechanism or the Higgs field (Aad et al., 2012, Englert and Brout, 1964, Higgs, 1964) which
is acting as an intermediate between these two worlds (dimensions), and which is able to explain
the generation of mass and at the end of locality too? As known, the cosmic microwave background
(CMBR) radiation (Penzias and Wilson, 1965) is an electromagnetic radiation which is considered as
one of the major confirmations of the Big Bang theory. A proof that the cosmic microwave background
radiation is the determining part of a 2 dimensional world bears equally the germ of the refutation
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of the Big Bang theory too. Nonetheless, it is not completely irrelevant to assume that the state
of pure non-locality can be found in a world of 2 or fewer dimensions. Under these conditions, a
gravitational potential is of lesser importance while the constancy of the speed of light does not appear
to remain an absolute frame of reference. In June 1911 Einstein published in the paper Annalen der
Physik an important remark: “Das Prinzip von der Konstanz der Lichtgeschwindigkeit gilt ... nicht
... die Lichtgeschwindigkeit im Schwerefelde [ist, author] eine Funktion des Ortes ...”(Einstein, 1911,
p. 906) and elaborated on this point again: “Dagegen bin ich der Ansicht, daß das Prinzip der
Konstanz der Lichtgeschwindigkeit sich nur insoweit aufrecht erhalten läßt, als man sich auf raum-
zeitliche Gebiete von konstantem Gravitationspotential beschränkt. Hier liegt nach meiner Meinung
die Grenze der Gültigkeit zwar nicht des Relativitätsprinzips wohl aber des Prinzips der Konstanz der
Lichtgeschwindigkeit und damit unserer heutigen Relativitatstheorie.”(Einstein, 1912a, p. 1062) Even
if all this might be purely hypothetically for the moment until exact research-results are available, the
beginning of our world can be found in pure non-locality too and not only in the big bang. Having said
this, I believe that the evolution, the degree and the complexity of the self-organization of objective
reality goes hand in hand with the number of space-time dimensions. Whether our four-dimensional
world is already part of an even higher-dimensional world might again remain provisionally an open
question.

Theorem 3.33. Under condition where x1 = x2, the Einstein field equation becomes(
R
D
− R

2
+Λ

)
×gµν ≡

((
RE t

2)
(Rt t2)

)
×
(

R
2
−Λ

)
×gµν (531)

Proof by direct proof. It is
x1 ≡ x2 (532)

or (
R
D
− R

2
+Λ

)
(RE t2)

≡

(
R
2
−Λ

)
(Rt t2)

(533)

and (
R
D
− R

2
+Λ

)
×
(

Rt t
2
)
≡
(

R
2
−Λ

)
×
(

RE t
2
)

(534)

and at the end (
R
D
− R

2
+Λ

)
≡

((
RE t

2)
(Rt t2)

)
×
(

R
2
−Λ

)
(535)

Equation 535 is multiplied by the metric tensor gµν . The Einstein field equation becomes(
R
D
− R

2
+Λ

)
×gµν ≡

((
RE t

2)
(Rt t2)

)
×
(

R
2
−Λ

)
×gµν (536)

□
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3.17. The energy scalar E

The expression on the left side of Einstein field equations represents the curvature of space-time as
determined by the metric, while the expression on the right side of Einstein field equations represents
the matter–energy content of space-time. Einstein described the (local) space-time curvature as Rµν −((

R
2

)
×gµν

)
+
(
Λ×gµν

)
. In the same respect, the (local) stress-energy and momentum has been

described by Einstein as
(

8×π × γ

c4

)
×T µν . Finally, Einstein has been of the opinion that there are

conditions where (local) stress-energy and momentum and (local) space-time curvature are determining
each other. In general, Einstein field equations relate (local) space-time curvature with (local) energy
and momentum by the equation

Rµν −
((

R
2

)
×gµν

)
+
(
Λ×gµν

)
︸                                           ︷︷                                           ︸

(local) space−time curvature

≡
(

4×2×π × γ

c4

)
×T µν︸                            ︷︷                            ︸

(local) energy and momentum

(537)

Mathematically, it is necessary to consider circumstances that it is possible to take the trace with respect
to the metric of both sides of the Einstein field equations.

Theorem 3.34 (Scalar E). In general, it is

E ≡ dE t
2 ≡

(
4×2×π × γ ×T

c4 ×D

)
(538)

Proof by direct proof. In general, the equation(
4×2×π × γ

c4

)
×T µν ≡

(
4×2×π × γ

c4

)
×T µν (539)

is correct. However, we want to express the stress-energy tensor of matter (see equation 539) com-
pletely by the metric tensor gµν . In general, it is and has to be that,

E ×gµν ≡ dE t
2 ×gµν ≡

(
4×2×π × γ

c4

)
×T µν (540)

However, equation 540 itself leads straightforward to clear consequences. We multiply equation 540
through by the inverse metric tensor gµν . It is

E ×gµν ×gµν ≡ dE t
2 ×gµν ×gµν ≡

(
4×2×π × γ

c4

)
×T µν ×gµν (541)

or (see definition 2.12, equation 50)

E ×D ≡ dE t
2 ×D ≡

(
4×2×π × γ ×T

c4

)
(542)
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At the end, the scalar E is determined as

E ≡ dE t
2 ≡

(
4×2×π × γ ×T

c4 ×D

)
(543)

□

Remark 3.3. In this publication, the notions E and d Et
2 are used interchangeably. However, d Et

2 is
not identical with R Et

2.

3.18. Stress-energy tensor completely geometrized

Judged from today’s perspective, does the definition of the stress-energy tensor(
4×2×π × γ ×T

c4

)
× T µν depend on the metric field gµν at all? Nonetheless, from the geo-

metrical point of view, it is worth being considered that

“In view of this geometrization, Einstein considered the role of the stress-energy tensor ... a weak
spot of the theory because it is a field devoid of any geometrical significance. ”

(see also Goenner, 2004, p. 7)

Theorem 3.35 (Stress-energy tensor completely geometrized). In general, it is

Eµν ≡
(

4×2×π × γ ×T
c4 ×D

)
×gµν (544)

Proof by direct proof. Based on equation 542, it is

E ≡ dE t
2 ≡

(
4×2×π × γ ×T

c4 ×D

)
(545)

Multiplying by the metric tensor gµν , we obtain

E ×gµν ≡ dE t
2 ×gµν ≡

(
4×2×π × γ ×T

c4 ×D

)
×gµν (546)

According to our definition 2.48, equation 546 changes to

Eµν ≡ E ×gµν ≡ dE t
2 ×gµν ≡

(
4×2×π × γ ×T

c4 ×D

)
×gµν (547)

□
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3.19. The scalar a

Theorem 3.36 (The scalar a).

fa2 ≡
(

1−
(

v2

c2

))
×
(

R
D
− R

2
+Λ

)
(548)

Proof by direct proof. Under conditions of Einstein’s general theory of relativity (Einstein, 1915,
1916, 1917, 1935, Einstein and de Sitter, 1932), the co-variant stress-energy tensor of ordinary matter,
in this context denoted by aµν , is given by the equation

aµν ≡ fa2 ×gµν (549)

For reason of consistency with Einstein’s general theory of relativity, it is

fa2 ×gµν ≡ x1 ×
(

0E t
2
)
×gµν (550)

The correction factor (see equation 520) has been identified as x1 ≡

(
R
D
− R

2
+Λ

)
(RE t2)

. Equation 550

becomes,

fa2 ×gµν ≡

((
0E t

2)
(RE t2)

)
×
(

R
D
− R

2
+Λ

)
×gµν (551)

or (see equation 240)

fa2 ×gµν ≡
(

1−
(

v2

c2

))
×
(

R
D
− R

2
+Λ

)
×gµν (552)

There are conditions, where the scalar ‘fa2’is determined by the relationship

fa2 ≡
(

1−
(

v2

c2

))
×
(

R
D
− R

2
+Λ

)
(553)

□

3.20. The scalar b

Theorem 3.37 (The scalar b). Under certain circumstances, the scalar fb2 is determined by the equa-
tion

fb2 ≡
(

v2

c2

)
×
(

R
D
− R

2
+Λ

)
(554)
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Proof by direct proof. Under conditions of Einstein’s general theory of relativity (Einstein, 1915,
1916, 1917, 1935, Einstein and de Sitter, 1932), co-variant stress-energy tensor of the electromagnetic
field, in this context denoted by bµν , described by the equation

bµν ≡
(

1
4×π

×
((

Fµ c ×Fν
c)+(1

4
×gµν ×Fde ×Fde

)))
(555)

(see Lehmkuhl, 2011, p. 13) is given by the relationship

fb2 ×gµν ≡ x1 ×
(

WE t
2
)
×gµν (556)

to. The correction factor (see equation 520) has been identified as x1 ≡

(
R
D
− R

2
+Λ

)
(RE t2)

. Equation 556

becomes,

fb2 ×gµν ≡
(

WE t
2
)
×


(

R
D
− R

2
+Λ

)
(RE t2)

×gµν (557)

which is equivalent with

fb2 ×gµν ≡

((
WE t

2)
(RE t2)

)
×
(

R
D
− R

2
+Λ

)
×gµν (558)

and with (see equation 254)

fb2 ×gµν ≡
(

v2

c2

)
×
(

R
D
− R

2
+Λ

)
×gµν (559)

There are conditions, where the scalar fb2 is determined by the relationship

fb2 ≡
(

v2

c2

)
×
(

R
D
− R

2
+Λ

)
≡
(

v2

c2

)
×
(

8×π × γ ×T
c4 ×D

)
(560)

□

Remark 3.4. In D=2 space-time dimension, the scalar b becomes

fb2 ≡
(

v2

c2

)
×
(

R
D = 2

− R
2
+Λ

)
≡ v2

c2 ×Λ (561)

3.21. The scalar c

Theorem 3.38 (The scalar c). There are conditions, where the scalar ‘fc2’is determined by the rela-
tionship

fc2 ≡
(

1−
(

v2

c2

))
×
(

R
2
−Λ

)
(562)

The term fc2 is different from the speed of the light in vacuum, c.
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Proof by direct proof. Under conditions of Einstein’s general theory of relativity (Einstein, 1915,
1916, 1917, 1935, Einstein and de Sitter, 1932), the tensor of ordinary time, in this context denoted by
cµν , is given by the equation

cµν ≡ fc2 ×gµν (563)

For reason of consistency with Einstein’s general theory of relativity, it is

fc2 ×gµν ≡ x2 ×
(

0t t
2
)
×gµν (564)

The correction factor (see equation 523) has been identified as x2 ≡

(
R
2
−Λ

)
(Rt t2)

. Equation 564 becomes,

fc2 ×gµν ≡

((
0t t

2)
(Rt t2)

)
×
(

R
2
−Λ

)
×gµν (565)

or (see equation 265)

fc2 ×gµν ≡
(

1−
(

v2

c2

))
×
(

R
2
−Λ

)
×gµν (566)

There are conditions, where the scalar ‘c’is determined by the relationship

fc2 ≡
(

1−
(

v2

c2

))
×
(

R
2
−Λ

)
(567)

□

3.22. The scalar d

Theorem 3.39 (The scalar d). Under certain circumstances, the scalar fd2 is determined by the equa-
tion

fd2 ≡
(

v2

c2

)
×
(

R
2
−Λ

)
(568)

Proof by direct proof. Under conditions of Einstein’s general theory of relativity (Einstein, 1915,
1916, 1917, 1935, Einstein and de Sitter, 1932), the tensor dµν is given by the relationship

fd2 ×gµν ≡ x2 ×
(

Wt t
2
)
×gµν (569)

to. The correction factor (see equation 523) has been identified as x2 ≡

(
R
2
−Λ

)
(Rt t2)

. Equation 569

becomes,

fd2 ×gµν ≡

((
Wt t

2)
(Rt t2)

)
×
(

R
2
−Λ

)
×gµν (570)
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which is equivalent with (see equation 271)

fd2 ×gµν ≡
(

v2

c2

)
×
(

R
2
−Λ

)
×gµν (571)

There are conditions, where the scalar d is determined by the relationship

fd2 ≡
(

v2

c2

)
×
(

R
2
−Λ

)
(572)

□

Table 9 provides an overview over the relationships outlined just before.

Table 9. Energy, time and space and the four basic fields of nature

Curvature
YES NO

YES
(

1−
(

v2

c2

))
×
(

R
D
− R

2
+Λ

)
×gµν

(
v2

c2

)
×
(

R
D
− R

2
+Λ

)
×gµν

8×π × γ

c4 ×D
×gµν

Momentum

NO
(

1−
(

v2

c2

))
×
(

R
2
−Λ

)
×gµν

(
v2

c2

)
×
(

R
2
−Λ

)
×gµν

(
R
2
−Λ

)
×gµν

dGt
2 ×gµν dGt

2 ×gµν Rµν

3.23. The scalar foundation of the Einstein field equations

Theorem 3.40 (The scalar foundation of the Einstein field equations). Above all, it is necessary to
extend the geometrization of gravitational force to non-gravitational interactions, in particular, to
electromagnetism, in order to achieve something like a geometrical unified field theory. Ultimately,
not all are comfortable with the geometrization of physics. Besides of all in order to describe all
fundamental interactions by appropriate objects of space-time geometry, it is necessary to work out
the foundations of the Einstein field equations. The D dimensional foundation of the Einstein field
equation is given by

R
D
−
(

R
2

)
+(Λ)≡

(
8×π × γ ×T

c4 ×D

)
(573)

Proof by modus ponens. If the premise of modus ponens

+1 =+1︸       ︷︷       ︸
(Premise)

(574)
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is true, then the following conclusion

R
D
−
(

R
2

)
+(Λ)≡

(
8×π × γ ×T

c4 ×D

)
(575)

is also true. The premise (+1 =+1) is true. Multiplying the premise (+1 =+1) by Einstein’s stress-
energy tensor of general relativity Tµν , we obtain

(+1)×
(

4×2×π × γ

c4

)
×T µν ≡ (+1)×

(
4×2×π × γ

c4

)
×T µν (576)

or (
4×2×π × γ

c4

)
×T µν ≡

(
2×π × γ

c4

)
×4×T µν (577)

Einstein offered the principle of general covariance as the foundation of the theory of general rela-
tivity and published the relationship between curvature and momentum in the form of his field equa-

tions as Rµν −
((

R
2

)
×gµν

)
+
(
Λ×gµν

)
≡
(

8×π × γ

c4

)
×T µν (see definition 2.39, equation 139).

Equation 577 changes too

Rµν −
((

R
2

)
×gµν

)
+
(
Λ×gµν

)
≡
(

8×π × γ

c4

)
×T µν (578)

Taking the trace with respect to the metric of both sides of the Einstein field equations one gets

Rµν ×gµν −
((

R
2

)
×gµν ×gµν

)
+
(
Λ×gµν ×gµν

)
≡
(

8×π × γ

c4

)
×T µν ×gµν (579)

Equation 579 simplifies as

R−
((

R
2

)
×D

)
+(Λ×D)≡

(
8×π × γ

c4

)
×T (580)

where D is the number of space-time dimensions (see definition 2.12, equation 50).Dividing equation
580 by D, the number of space-time dimensions, simplifies equation 580 further. Thus far, from the
epistemological standpoint, the generally valid D dimensional foundation of the Einstein field equa-
tions is given by (

R
D
−
(

R
2

)
+(Λ)

)
≡
(

8×π × γ ×T
c4 ×D

)
(581)

□

3.24. Einstein’s Weltformel

Einstein is a Kantian, in the details of his philosophy(see also Weinert, 2005) or at least in the
outlines of his physics, or both or none? In the end, it will be necessary that each reader answers
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this question for himself. Clearly, there are numerous non-contradictory points of contact between
Kant and Einstein. However, it is an open secret, that Einstein was demonstrably sceptical towards
the heart and the core of Kant’s philosophy, Kant’s apriorism. Again, Einstein is writing: ‘Das ist die
Erbsünde Kants, dass Begriffe und Kategorien, die nicht aus der Erfahrung gewonnen werden können,
zum Verständnis dieser Erfahrung notwendig sein sollen. Unbefriedigend bleibt dabei aber immer die
Willkür der Auswahl derjenigen Elemente, die man als apriorisch bezeichnet.’(see also Fölsing, Al-
brecht, 1993, p. 544). Translated into broken English: ‘That is Kant’s fundamental error that concepts
and categories which cannot be obtained from experience should be necessary for an understanding
of this experience. However, the arbitrary choice of those elements that are called a priori remains
unsatisfactory. ’At the end, there appears not to be a better way to sum up the contradiction between
Immanuel Kant’s theory of knowledge and Einstein’s theory of relativity but to cite Einstein himself.

“The elements of ... reality cannot be determined by a priori philosophical considerations,

but must be found by an appeal to results of experiments and measurements. ”

(see Einstein et al., 1935b, p. 777)

Through the development of science, philosophers reacted to scientific discoveries by reshaping their
notions. Especially, the evolution of physical concepts guided the evolution of philosophical notions
like space and time too and vice versa. Considered from the historical point of view, a chain of rejec-
tions started at least with Leibniz. Leibniz rejected Newton’s concept of absolute space and absolute
time, Kant himself rejected Leibnizian relationism with respect to space and time et cetera. The way
out, so it seemed to Einstein, which is much closer to Leibniz than to Kant, was to regard space and
time as space-time, as a union of space and time. As is documented by publications, Albert Einstein’s
(1879–1955) own post-Kantianism philosophy of science culminated in the Einstein field equations(see

also Einstein, 1916, 1917) derived as Gµν +
(
Λ×gµν

)
=

(
8×π × γ

c4

)
×T µν where Gµν is a rank-

2 co-variant tensor describing the space-time curvature (the Einstein tensor (see Kasner, 1920))

and
(

8×π × γ

c4

)
×T µν is the stress–energy tensor or the stress–energy–momentum tensor or the en-

ergy–momentum tensor of matter while Λ is the cosmological constant(see also Einstein and Sitter,
1932, Einstein, 1917). Misner et al. (see also Misner et al., 1973, p. 5) summarized the Einstein’s
geometric theory of gravity as follows:

“Space acts on matter, telling it how to move.

In turn,

matter reacts back on space, telling it how to curve. ”

(see also Misner et al., 1973, p. 5)

Theorem 3.41. Thus far, let Rµν = aµν + bµν + cµν + dµν denote the second-rank co-variant Ricci
curvature tensor, the trace of the Riemann curvature tensor. Let aµν , bµν , cµν and dµν denote the
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four basic fields of nature, while aµν denote the stress-energy tensor of ordinary matter, bµν denote the
stress-energy tensor of the electromagnetic field. As it has been already proven several times, it is aµν ≡

a×gµν and bµν ≡ b×gµν and cµν ≡ c×gµν and dµν ≡ d ×gµν and Eµν =
8×π × γ ×T

c4 ×D
×gµν =

aµν + bµν and Gµν = G× gµν =

(
R
D
− R

2

)
× gµν = aµν + cµν . In general, Einstein’s Weltformel is

determined as

k =
(a×d)− (b× c)

2

√((
R
D
− R

2

)
×
(

R
2

)
×
(

8×π × γ ×T
c4 ×D

)
×
(

R
2
−Λ

))
(582)

Proof by direct proof. The premise
+1 =+1 (583)

is true. The Ricci scalar R follows as R=Rµν ×gµν = aµν ×gµν +bµν ×gµν +cµν ×gµν +dµν ×gµν .
Once again, it is more than ever necessary to repeat the point that a, b, c and d are only placeholders of
the scalars of the four basic fields of nature. These parameters don’t say anything about the content or
the value of the scalar. Under other conditions these placeholders were denoted as fa2, fb2, c2 and fd2.

This should not engender any confusion. Multiplying equation 583 by
R
D

= a+b+ c+d,it is(
R
D

)
=

(
R
D

)
(584)

Multiplying equation 584 by the scalar ‘a’of the stress-energy tensor of ordinary matter, aµν , it is(
R
D
×a
)
=

(
R
D
×a
)

(585)

Subtracting the term
(((

8×π × γ ×T
c4 ×D

)
×G

))
, we obtain(

R
D
×a
)
−
(((

8×π × γ ×T
c4 ×D

)
×G

))
=

(
R
D
×a
)
−
(((

8×π × γ ×T
c4 ×D

)
×G

))
(586)

It is
R
D

= a+b+ c+d Equation 586 changes to(
R
D
×a
)
−
(((

8×π × γ ×T
c4 ×D

)
×G

))
= (a+b+ c+d)×a

−
(((

8×π × γ ×T
c4 ×D

)
×G

)) (587)

Additionally, it is
(

8×π × γ ×T
c4 ×D

)
= a+b and G = a+ c equation 587 changes to(

R
D
×a
)
−
(((

8×π × γ ×T
c4 ×D

)
×G

))
= (a+b+ c+d)×a

− ((a+b)× (a+ c))
(588)
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Simplifying equation 588, it is(
R
D
×a
)
−
(((

8×π × γ ×T
c4 ×D

)
×G

))
= (a×a)+(a×b)+(a× c)+(a×d)

− (a×a)− (a×b)− (a× c)− (b× c)
(589)

and equally according to our today mathematical rules(
R
D
×a
)
−
(((

8×π × γ ×T
c4 ×D

)
×G

))
= (a×d)− (b× c) (590)

Equation 590 is divided by the term 2

√((
R
D
− R

2

)
×
(

R
2

)
×
(

8×π × γ ×T
c4 ×D

)
×
(

R
2
−Λ

))
. Equa-

tion 590 changes to(
R
D
×a
)
−
(((

8×π × γ ×T
c4 ×D

)
×G

))
2

√((
R
D
− R

2

)
×
(

R
2

)
×
(

8×π × γ ×T
c4 ×D

)
×
(

R
2
−Λ

)) =
(a×d)− (b× c)

2

√((
R
D
− R

2

)
×
(

R
2

)
×
(

8×π × γ ×T
c4 ×D

)
×
(

R
2
−Λ

))
(591)

In the following, we would like to point out the following definition.

Definition 3.6 (Einstein’s Weltformel scalar k).

k =

(
R
D
×a
)
−
(((

8×π × γ ×T
c4 ×D

)
×G

))
2

√((
R
D
− R

2

)
×
(

R
2

)
×
(

8×π × γ ×T
c4 ×D

)
×
(

R
2
−Λ

)) (592)

Based on definition 3.6, equation 591 changes and another adequate expression of the scalar k of
Einstein’s Weltformel follows as

k =
(a×d)− (b× c)

2

√((
R
D
− R

2

)
×
(

R
2

)
×
(

8×π × γ ×T
c4 ×D

)
×
(

R
2
−Λ

))
(593)

Multiplying equation 593 by the metric tensor gµν ..., the D dimensional, n-th index Einstein’s Welt-
formel (causal relationship k) is given by

k×gµν ... = kµν ... =

 (a×d)− (b× c)

2

√((
R
D
− R

2

)
×
(

R
2

)
×
(

8×π × γ ×T
c4 ×D

)
×
(

R
2
−Λ

))
×gµν ... (594)
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while a, b, c, d denote scalars of the four basic fields of nature. Multiplying equation 593 by the wave
function Ψ, it is

k×Ψ =

 (a×d)− (b× c)

2

√((
R
D
− R

2

)
×
(

R
2

)
×
(

8×π × γ ×T
c4 ×D

)
×
(

R
2
−Λ

))
×Ψ (595)

Multiplying equation 593 by the wave function Ψ and the metric tensor gµν , it is

k×Ψ×gµν ... =

 (a×d)− (b× c)

2

√((
R
D
− R

2

)
×
(

R
2

)
×
(

8×π × γ ×T
c4 ×D

)
×
(

R
2
−Λ

))
×Ψ×gµν ... (596)

However, equation 596 does not exclude conditions where k ≡ Ψ. Nonetheless, equation 596 changes
(according to definition 2.3) to

k×Ψµν ... =

 (a×d)− (b× c)

2

√((
R
D
− R

2

)
×
(

R
2

)
×
(

8×π × γ ×T
c4 ×D

)
×
(

R
2
−Λ

))
×Ψµν ... (597)

□

Remark 3.5. It is an open question whether the relationship

k+2 =
((a×d)− (b× c))× ((a×d)− (b× c))((

R
D
− R

2

)
×
(

R
2

)
×
(

8×π × γ ×T
c4 ×D

)
×
(

R
2
−Λ

)) ≡ χ2

R
D

(598)

is valid where χ is chi square(see also Pearson, 1904, p. 6) distributed. Depending upon several
factors, equation 593 derived as

k =
(a×d)− (b× c)

2

√((
R
D
− R

2

)
×
(

R
2

)
×
(

8×π × γ ×T
c4 ×D

)
×
(

R
2
−Λ

))
(599)

can be equal to zero, less than zero or greater than zero. Does equation 599 allow something like
a creatio ex nihilio, a creation or a beginning of our world out of nothing, however we may define
nothing? Are questions like these beyond any human experience?

Physics and the Einstein field equations many times study only something what exists. Consequently,
one might expect physics including the Einstein field equations to have little to say about the special

CAUSATION ISSN: 1863-9542 https://www.doi.org/10.5281/zenodo.5717335 Volume 17, Issue 9, 1–157

https://portal.issn.org/resource/ISSN/1863-9542
https://www.doi.org/10.5281/zenodo.5717335


111

case in which nothing, an absence of something, exists. It is necessary to point out, nothing exists, it
is a nothing, but it is given too. As far as simplicity is concerned, there is a tie between the Einstein
field equations and Nothingness as such.

Let us imagine a manifold where aµν , the stress energy tensor of ordinary matter vanish, where aµν

= 0. Equation 590 changes to

(
Rµν ∩0µν

)
−
(((

8×π × γ

c4

)
×T µν

)
∩Gµν

)
=
(
0µν ∩dµν

)
−
(
bµν ∩ cµν

)
(600)

But by the same reasoning there is nothing rather than something or

−
(((

8×π × γ

c4

)
×T µν

)
∩Gµν

)
=−

(
bµν ∩ cµν

)
(601)

while bµν contains the entire stress-energy of the manifold studied while cµν contains the entire
gravitational field. Reissner–Nordström were the first to describe a kind of an electrovacuum, a
geometry around a charged spherical mass (see also Nordström, 1918, Reissner, 1916). However,
in contrast to Reissner–Nordström electrovacuum, equation 601 describes regions without ordinary

mass (aµν = 0) where the stress energy tensor
(

8×π × γ

c4

)
×T µν has not vanished but has passed

over into the stress-energy tensor of the electromagnetic field, bµν , completely. In other words, it is(
8×π × γ

c4

)
×T µν = bµν . Under these conditions, the stress-energy tensor of the electromagnetic

field is the source of the gravitational field (cµν ), which itself has not vanished either. Equation 601
describes the flat, the empty negative and is more or less one typical feature of the exact electro vacuum
solution of the Einstein field equation and may be of any emptiness at all.

The question is justified, is emptiness or nothingness absolute or relative or both or none and can
we know self-consciously anything at all about any emptiness, the void, which does not exist? Radical
advocates of a creation out of nothing prefer the possibility of total nothingness. Equation 601 in turn
implies that there can be some nothingness but the same is relative too. However, a beginning of our
world out of the empty negative (see equation 601) is possible, theoretically.
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3.25. Ricci scalar, lambda and anti-lambda

Theorem 3.42 (Ricci scalar, lambda and anti-lambda). The logical need and the justification for a
concept of lambda and anti-lambda as the most basic foundation of nature has been presented by
myself to the public on Thursday, 13th of June 2013 about 15.35-15.55 local time at the conference
Quantum Theory: Advances and Problems - (QTAP) in Växjö, Sweden, June 10-13,2013 and has been
published (Barukčić, 2015a) later. In general, it is(

R×gµν

)
+0 ≡

(
Λ×gµν

)
+
(
Λ×gµν

)
(602)

Proof by direct proof. If the premise
+1 =+1︸       ︷︷       ︸
(Premise)

(603)

is true, then the following conclusion

R×gµν +0 ≡
(
Λ×gµν

)
+
(
Λ×gµν

)
(604)

is also true, again the absence of any technical errors presupposed. The premise

+1 ≡+1 (605)

is true. We multiply equation 605 through by R×gµν , it is

R×gµν ≡ R×gµν (606)

Adding zero, we obtain (
R×gµν

)
+0 ≡

(
R×gµν

)
−
(
Λ×gµν

)
+
(
Λ×gµν

)
(607)

In accordance with our definition (see definition 2.44), it is
(
Λ×gµν

)
≡
(
R×gµν

)
−
(
Λ×gµν

)
. Equa-

tion 607 changes to (
R×gµν

)
+0 ≡

(
Λ×gµν

)
+
(
Λ×gµν

)
(608)

□

3.26. Nature as the unity and the struggle of opposites

Theorem 3.43 (Nature as the unity and the struggle of opposites). The Einstein field equations describe
the unity and the struggle of opposites as((

1
D
+

(
1
2

))
×Λ×gµν

)
+

((
1
D
−
(

1
2

))
×Λ×gµν

)
≡
(

8×π × γ ×T
c4 ×D

)
×gµν (609)
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Proof by direct proof. If the premise
+1 =+1︸       ︷︷       ︸
(Premise)

(610)

is true, then the following conclusion((
1
D
+

(
1
2

))
×Λ×gµν

)
+

((
1
D
−
(

1
2

))
×Λ×gµν

)
≡
(

8×π × γ ×T
c4 ×D

)
×gµν (611)

is also true, again the absence of any technical errors presupposed. The premise

+1 ≡+1 (612)

is true. We multiply equation 612 through by equation 581 . It is

R
D
−
(

R
2

)
+(Λ)≡

(
8×π × γ ×T

c4 ×D

)
(613)

According to equation 608, it is R ≡ (Λ)+(Λ). Equation 613 simplifies as

Λ+Λ

D
−
(

Λ+Λ

2

)
+(Λ)≡

(
8×π × γ ×T

c4 ×D

)
(614)

Equation 614 is identical with

Λ

D
+

Λ

D
−
(

Λ

2

)
−
(

Λ

2

)
+(Λ)≡

(
8×π × γ ×T

c4 ×D

)
(615)

and with

(Λ)+
Λ

D
−
(

Λ

2

)
+

Λ

D
−
(

Λ

2

)
≡
(

8×π × γ ×T
c4 ×D

)
(616)

and finally with (
1
D
+1−

(
1
2

))
×Λ+

(
1
D
−
(

1
2

))
×Λ ≡

(
8×π × γ ×T

c4 ×D

)
(617)

The unity and the struggle of opposites as the foundation of nature is equally the foundation of the
Einstein field equations as((

1
D
+

(
1
2

))
×Λ×gµν

)
+

((
1
D
−
(

1
2

))
×Λ×gµν

)
≡
(

8×π × γ ×T
c4 ×D

)
×gµν (618)

□

In a very special way, it is necessary to drew readers attention to the grave consequences which

theoretically might be given under conditions where
(

8×π × γ ×T
c4 ×D

)
× gµν ≡ +0. Under these cir-

cumstances, equation 618 changes to

+
((

1
D
+

(
1
2

))
×Λ×gµν

)
≡ -
((

1
D
−
(

1
2

))
×Λ×gµν

)
(619)

the state of pure symmetry, the unity and the struggle between a purely positive and a purely negative.
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3.27. Relativistic Schrödinger equation

The Schrödinger equation (Schrödinger, 1926) is not compatible with general and special theory
of relativity to a necessary extent. It is therefore hardly surprising that there are already several trials
to formulate relativistic versions (Bel and Ruiz, 1998) of the Schrödinger equation to ensure com-
patibility with relativity theory, the Klein–Gordon–Fock equation (Gordon, 1926, Klein, 1926) or the
Dirac equation (Dirac, 1928) are some of these attempts. However, the most of the relativistic wave
equations known are more or less a quantized version of the relativistic energy–momentum relation.
Nonetheless, a relativistic Schrödinger wave equation (Barukčić, 2013) incorporating the gravitational
field too is everywhere as far as the eye can reach, neither known nor generally accepted.

Theorem 3.44 (Relativistic Schrödinger equation). The D dimensional gravitational relativistic
Schrödinger equation is given by(

R
D
−
(

R
2

)
+(Λ)

)
×Ψ ≡

(
4×2×π × γ ×T

c4 ×D

)
×Ψ (620)

Proof by direct proof. If the premise
+1 =+1︸       ︷︷       ︸
(Premise)

(621)

is true, then the following conclusion The D dimensional gravitational relativistic Schrödinger equa-
tion is given by (

R
D
−
(

R
2

)
+(Λ)

)
×Ψ ≡

((
8×π × γ ×T

c4 ×D

))
×Ψ (622)

where Ψ is the wave function, is also true, again the absence of any technical errors presupposed. The
premise

+1 ≡+1 (623)

is true. We multiply equation 623 through by
(

8×π × γ ×T
c4 ×D

)
. It is

(
8×π × γ ×T

c4 ×D

)
≡
(

4×2×π × γ ×T
c4 ×D

)
(624)

Equation 624 changes (in accordance with equation 573) too(
R
D
−
(

R
2

)
+(Λ)

)
≡
(

4×2×π × γ ×T
c4 ×D

)
(625)

We multiply equation 625 through by the wave function Ψ. The D dimensional gravitational relativistic
Schrödinger equation is given by(

R
D
−
(

R
2

)
+(Λ)

)
×Ψ ≡

(
4×2×π × γ ×T

c4 ×D

)
×Ψ (626)
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Recall that h is Planck’s constant (Planck, 1901), ℏ is Dirac’s constant (Dirac, 1926), the reduced
Planck’s constant, and π denote Archimedes constant. Therefore, it is

2×π ≡ h
ℏ

(627)

Equation 626 changes slightly. The quantized form of the D dimensional gravitational relativistic
Schrödinger equation is given by(

R
D
+(Λ)−

(
π ×ℏ×R

h

))
×Ψ ≡

(
h×4× γ ×T
ℏ× c4 ×D

)
×Ψ (628)

□

3.28. Relativistic Schrödinger equation as the unity of opposites

Theorem 3.45 (Relativistic Schrödinger equation as the unity of opposites).((
1
D
+

(
1
2

))
×Λ×Ψ

)
+

((
1
D
−
(

1
2

))
×Λ×Ψ

)
≡
(

8×π × γ ×T
c4 ×D

)
×Ψ (629)

Proof by direct proof. If the premise
+1 =+1︸       ︷︷       ︸
(Premise)

(630)

is true, then the following conclusion((
1
D
+

(
1
2

))
×Λ×Ψ

)
+

((
1
D
−
(

1
2

))
×Λ×Ψ

)
≡
(

8×π × γ ×T
c4 ×D

)
×Ψ (631)

is also true, again the absence of any technical errors presupposed. The premise

+1 ≡+1 (632)

is true. We multiply equation 632 through by equation 617, it is((
1
D
+

(
1
2

))
×Λ

)
+

((
1
D
−
(

1
2

))
×Λ

)
≡
(

8×π × γ ×T
c4 ×D

)
(633)

In the Schrödinger picture, let Ψ denote the wave function. The D-dimensional relativistic Schrödinger
equation of general relativity follows as((

1
D
+

(
1
2

))
×Λ×Ψ

)
+

((
1
D
−
(

1
2

))
×Λ×Ψ

)
≡
(

8×π × γ ×T
c4 ×D

)
×Ψ (634)

Let h denote Planck’s constant (Planck, 1901), let ℏ denote Dirac’s constant (Dirac, 1926), the reduced
Planck’s constant, let π denote Archimedes constant. It is
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1
2
≡ π ×ℏ

h
(635)

Equation 634 changes to((
1
D
+

(
π ×ℏ

h

))
×Λ×Ψ

)
+

((
1
D
−
(

π ×ℏ
h

))
×Λ×Ψ

)
≡
((

h
ℏ

)
× 4× γ ×T

D× c4

)
×Ψ (636)

□

Remark 3.6. Einstein’s field equations of general theory of relativity under conditions of D=4 space-
time dimensions become((

1
4
+

(
π ×ℏ

h

))
×Λ×Ψ

)
+

((
1
4
−
(

π ×ℏ
h

))
×Λ×Ψ

)
≡
((

h
ℏ

)
× γ ×T

c4

)
×Ψ (637)

3.29. Relativistic wave equation and strings

A theory of quantum gravity incorporating both the principles of quantum theory and general rela-
tivity could be able to provide a satisfactory mathematical description of the microstructure of space-
time. Put as simply as possible, the gravitational field itself or the curvature of spacetime determined by
matter and energy need to be quantized as derived by equation 636. The string theory tried in this con-
text to replace the point particles (photons, electrons, etc) of quantum field theory by one-dimensional
extended objects called strings. However, the Kaluza–Klein theory (Kaluza, 1921) is already a kind
of historical precursor of string theory and equally a classical unified field theory of gravitation and
electromagnetism built around fifth dimension which used a similar idea of Gunnar Nordström. Nord-
ström suggested: “Es wird gezeigt, daß eine einheitliche Behandlung des elektromagnetischen Feldes
und des Gravitationsfeldes möglich ist, wenn man die vierdimensionale Raumzeitwelt als eine durch
eine fünfdiminsionale Welt gelegte Fläche auffaßt. “ (Nordström, 1914). In M-theory (see Witten,
1998, p. 1129) space-time is 11-dimensional (ten spatial dimensions, and one time dimension), while
in super-string theory (de Haro et al., 2013) space-time is ten-dimensional (nine spatial dimensions,
and one time dimension), and in bosonic string theory (de Haro et al., 2013), it is 26-dimensional. In
the year 1995, Edward Witten (see Witten, 1995) suggested that the five consistent versions of super-
string theory (type I, type IIA, type IIB, and two versions of heterotic string theory) were just special
limiting cases of an eleven-dimensional theory called M-theory. Insofar as issues of string theory and
Einstein’s general theory of relativity are involved, it should be noted that the Einstein’s field equations
of the general theory of relativity does not in any way privilege a particular space-time geometry or a
space-time dimension. The Einstein’s field equations of the general theory of relativity derived as(

R
D
×gµν ...

)
−
((

R
2

)
×gµν ...

)
+
(
Λ×gµν ...

)
︸                                                               ︷︷                                                               ︸

the le f t−hand side

≡
(

4×2×π × γ ×T
c4 ×D

)
×gµν ...︸                                    ︷︷                                    ︸

the right−hand side

(638)

are able to cope with any space-time dimension.
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Theorem 3.46 (Relativistic wave equation and strings). Under conditions of D = 1 space-time dimen-
sions, the relativistic wave equation is given by

((
3
2

)
×Λ×Ψ

)
+

((
1
2

)
×Λ×Ψ

)
≡
(

8×π × γ ×T
c4

)
×Ψ (639)

Proof by direct proof. If the premise
+1 =+1︸       ︷︷       ︸
(Premise)

(640)

is true, then the following conclusion((
3
2

)
×Λ×Ψ

)
+

((
1
2

)
×Λ×Ψ

)
≡
(

8×π × γ ×T
c4

)
×Ψ (641)

is also true, again the absence of any technical errors presupposed. The premise

+1 ≡+1 (642)

is true. We multiply equation 641 through by equation 634. It is((
1
D
+

(
1
2

))
×Λ×Ψ

)
+

((
1
D
−
(

1
2

))
×Λ×Ψ

)
≡
(

8×π × γ ×T
c4 ×D

)
×Ψ (643)

Under conditions of D=1 space-time dimension equation 643 becomes((
1
1
+

(
1
2

))
×Λ×Ψ

)
+

((
1
1
−
(

1
2

))
×Λ×Ψ

)
≡
(

4×2×π × γ ×T
c4 ×1

)
×Ψ (644)

The relativistic wave equation, which should be able to describe strings to, becomes((
3
2

)
×Λ×Ψ

)
+

((
1
2

)
×Λ×Ψ

)
≡
((

h
ℏ

)
× 4× γ ×T

c4

)
×Ψ (645)

□

3.30. The field equations of gravitational waves

Theorem 3.47 (The field equations of gravitational waves). In general, it is

Rµν −
(((

R
2

)
− (Λ)

)
× gwgµν

)
−
(((

R
2

)
− (Λ)

)
× gwgµν

)
≡
((

8×π × γ ×T
c4 ×D

)
×gµν

)
(646)
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Proof by direct proof. It is (
gwgµν

)
+
(

gwgµν

)
≡ gµν (647)

Multiplying equation 647 by
((

R
2

)
− (Λ)

)
, it is

(((
R
2

)
− (Λ)

)
× gwgµν

)
+

(((
R
2

)
− (Λ)

)
× gwgµν

)
≡
((

R
2

)
− (Λ)

)
×gµν (648)

which is equivalent with

(((
R
2

)
− (Λ)

)
× gwgµν

)
+

(((
R
2

)
− (Λ)

)
× gwgµν

)
≡ Rµν −

((
8×π × γ ×T

c4 ×D

)
×gµν

)
(649)

Einstein field equations in terms of gravitational waves becomes

Rµν −
(((

R
2

)
− (Λ)

)
× gwgµν

)
−
(((

R
2

)
− (Λ)

)
× gwgµν

)
≡
((

8×π × γ ×T
c4 ×D

)
×gµν

)
(650)

□

3.31. The tensor specific metric tensors

Today’s majority of physicist are thoroughly convinced that the four fundamental forces of nature
which determine everything that happens in the universe are gravity, the weak force, electromagnetism
and the strong force. The electroweak theory (Glashow, 1959, Weinberg, 1967) which unified the
electromagnetic force with the weak force to form the concept of the electroweak force is compatible
with the assumption of the Higgs (Aad et al., 2012, Englert and Brout, 1964, Higgs, 1964) boson.
However, a unification of the fundamental forces under a single, unified theory has not been crown
with success yet. An outstanding question inevitably comes to mind. Is another point of view on the
four fundamental forces of nature logically possible and necessary?

In this context, reference must be made in particular to the necessity to unify the strong force
with the weak force into the ordinary force. This procedure moves us one step further towards our
goal, which is to ensure the unification of all four fundamental forces of nature. Furthermore, in this
publication, the gravitational waves (Einstein, 1918a, LIGO et al., 2016) are treated as an own basic
force of nature. Now all the individual pieces will fit together as presented by the table 10.

CAUSATION ISSN: 1863-9542 https://www.doi.org/10.5281/zenodo.5717335 Volume 17, Issue 9, 1–157

https://portal.issn.org/resource/ISSN/1863-9542
https://www.doi.org/10.5281/zenodo.5717335


119

Table 10. The four basic fields of nature

Curvature
YES NO

YES Ordinary Electromagnetic Stress-energy
matter field tensor

Momentum
NO Gravitational Gravitational Anti stress-energy

field waves tensor
Einstein Anti Einstein Ricci
tensor tensor tensor

Theorem 3.48 (The tensor specific metric tensors). Let aµν , bµν , cµν and dµν denote the four basic
fields of nature where aµν is the stress-energy tensor of ordinary matter with its own metric agµν , bµν

is the stress-energy tensor of the electromagnetic field with its own metric bgµν , cµν is the tensor of the
gravitational field with its own metric cgµν and dµν is the tensor of gravitational waves with its own
metric dgµν . The tensor specific metric tensor (see table 11) is given by

x4gµν ≡ x4 ×D
R

×gµν (651)

Proof by direct proof. If the premise
+1 =+1︸       ︷︷       ︸
(Premise)

(652)

is true, then the following conclusion

x4gµν ≡ x4 ×D
R

×gµν (653)

is also true, again the absence of any technical errors presupposed. Our assumption is that

R
D
× x4gµν ≡ x4 ×gµν (654)

while x4gµν is the specific metric tensor, gµν is the tensor of general relativity, R is the Ricci scalar, D
is the space-time dimension and x4 is a tensor specific scalar. In general, a tensor specific metric tensor
(see table 11) is given by

x4gµν ≡ x4 ×D
R

×gµν (655)

□

Example.
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Set x4 = a for the stress energy tensor of ordinary matter. In this case, it is

agµν ≡ a×D
R

×gµν (656)

Table 11. The four basic fields of nature II

Curvature
YES NO

Momentum YES (
R
D
× agµν ) (

R
D
× bgµν ) (

R
D
× Egµν )

NO (
R
D
× cgµν ) (

R
D
× dgµν ) (

R
D
× Egµν )

(
R
D
× Ggµν ) (

R
D
× Ggµν ) (

R
D
× gµν )

3.32. Objective reality under conditions of 2 space-time dimensions

Theorem 3.49 (Objetive reality under conditions of 2 space-time dimensions). The original form of
Einstein field equations (Einstein, 1916, 1917, 1950, Einstein and de Sitter, 1932) are derived as

Rµν −
((

R
2

)
×gµν

)
+
(
Λ×gµν

)
≡
(

8×π × γ

c4

)
×T µν (657)

Under conditions of objective reality of D=2 dimensions it is

Rµν −
((

R
2

)
×gµν

)
≡ 0 (658)

or

Rµν ≡
((

R
2

)
×gµν

)
(659)

and the Einstein field equation’s become

(
R×gµν

)
−
(
Λ×gµν

)
≡
(

4×π × γ ×T
c4

)
(660)

Proof by direct proof. If the premise
+1 =+1︸       ︷︷       ︸
(Premise)

(661)
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is true, then the following conclusion(
R×gµν

)
−
(
Λ×gµν

)
≡
(

4×π × γ ×T
c4

)
(662)

is also true, again the absence of any technical errors presupposed. The premise

+1 ≡+1 (663)

is true. Multiplying this premise by Einstein’s stress-energy tensor of general relativity, we obtain

+1×
(

8×π × γ

c4

)
×
(

T
D

)
×gµν ≡+1×

(
8×π × γ

c4

)
×
(

T
D

)
×gµν (664)

or (
8×π × γ

c4

)
×
(

T
D

)
×gµν ≡

(
8×π × γ

c4

)
×
(

T
D

)
×gµν (665)

According to Einstein it is Rµν −
((

R
2

)
×gµν

)
+
(
Λ×gµν

)
≡
(

8×π × γ

c4

)
×T µν (see definition

2.39). Equation 665 changes to,((
R
D

)
×gµν

)
−
((

R
2

)
×gµν

)
+
(
Λ×gµν

)
≡
(

8×π × γ

c4

)
×
(

T
D

)
×gµν (666)

which is the general form of the 2-index Einstein’s field equations under conditions of D dimensions.
Under conditions of D=2 space-time conditions, the 2-index Einstein’s field equations becomes((

R
2

)
×gµν

)
−
((

R
2

)
×gµν

)
+
(
Λ×gµν

)
≡
(

8×π × γ

c4

)
×
(

T
2

)
×gµν (667)

or

0+
(
Λ×gµν

)
≡
(

8×π × γ

c4

)
×
(

T
2

)
×gµν (668)

To bring it again to the point, equation 668 simplifies as

(Λ)×gµν ≡
(

4×π × γ ×T
c4

)
×gµν (669)

However, according to definition 608 it is

+
(
Λ×gµν

)
≡
(
R×gµν

)
−
(
Λ×gµν

)
(670)

Therefore and in general, under conditions of D=2 space-time dimensions of objective reality, the
Einstein’s field equations becomes(

R×gµν

)
−
(
Λ×gµν

)
≡
(

4×π × γ ×T
c4

)
(671)

In other words, our conclusion is true.

□
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Remark 3.7. We are now on the edge and only one step away from the door leading to a sudden
logical collapse of Einstein’s theory of general relativity. How might we save our soul from such a
logical inferno? From the point of view of pure logic, the possibility of an objective reality with D=2
space-time dimensions cannot be ignored and follows straight forward in a logically consistent way
from the Einstein field equations. But now, under these conditions, Einstein’s cosmological constant Λ

(see equation 669) is determined as

Λ ≡
(

4×π × γ

c4

)
×T (672)

or something as Λ ≈ T and by far not a constant. Under conditions where

ρ ≡
(

T
c4

)
(673)

Einstein’s cosmological constant Λ reduces to something like a special-relativistic generalization of
the Poisson’s equation for gravity as

Λ ≡ ▽2 ×φ ≡ (4×π × γ ×ρ) (674)

where ▽ is the Poisson operator and φ is a scalar potential. Whichever way one might look at this
issue, it cannot be reasonably concluded that Einstein’s cosmological constant Λ is a constant. In fact,
if we look back to the past development of objective reality we can logically assume that before our
four dimensional objective reality there could have existed an objective reality with two dimensions
from which our four dimensional world has developed. However, this does not exclude, that a two-
dimensional objective reality does not exist any longer. It is to be noted that a manifold with only two
dimensions is determined by the stress-energy tensor of the electromagnetic field (b × gµν ) given by

b×gµν ≡+Λ×gµν (675)

and equally by the tensor of gravitational waves (d × gµν ) given by

d ×gµν ≡
((

R
2

)
×gµν

)
−
(
Λ×gµν

)
(676)

Curvature
YES NO

Momentum YES +0 (+Λ× gµν )
4×2×π × γ ×T

2× c4 × gµν

NO +0 (
R
2
× gµν - Λ× gµν ) (

R
2
× gµν - Λ× gµν )

+0
R
2
× gµν

R
2
× gµν

Table 12. Objective reality under conditions of two space-time dimensions
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3.33. Objective reality under conditions of 1 space-time dimension

Theorem 3.50 (Objective reality under conditions of 1 space-time dimension). The relationship be-
tween energy, time and space is the foundation of objective reality. However, whether a one dimen-
sional world has freed itself out of itself from the limitations of zero (dimension), the state of pure
symmetry where a positive is identical with a negative or vacuum as such, might be an issue of further
research. In other words, below two dimensions, it is possible that time passes over into energy and
vice versa. Nonetheless, logically, the assumption of a big bang as the starting point of the develop-
ment of a four-dimensional world is not completely convincing. Furthermore, whether the next step of
development of objective reality is a world with 8 dimensions is a point of issue not solved today. In
particular, under conditions of D=1 space-time dimension, Einstein’s field equations becomes

+

((
R
2

)
×gµν

)
+
(
Λ×gµν

)
≡
(

8×π × γ ×T
c4

)
×gµν (677)

Proof by direct proof. If the premise
+1 =+1︸       ︷︷       ︸
(Premise)

(678)

is true, then the following conclusion

+

((
R
2

)
×gµν

)
+
(
Λ×gµν

)
≡
(

8×π × γ ×T
c4

)
×gµν (679)

is also true, again the absence of any technical errors presupposed. The premise

+1 ≡+1 (680)

is true. Multiplying equation 680 by the Einstein field equations, we obtain((
R
D

)
×gµν

)
−
((

R
2

)
×gµν

)
+
(
Λ×gµν

)
≡
(

8×π × γ

c4

)
×
(

T
D

)
×gµν (681)

Under conditions of D=1 space-time dimension it is((
R
1

)
×gµν

)
−
((

R
2

)
×gµν

)
+
(
Λ×gµν

)
≡
(

8×π × γ

c4

)
×
(

T
1

)
×gµν (682)

In general, under conditions of D=1 space-time dimension, Einstein’s field equations becomes

+

((
R
2

)
×gµν

)
+
(
Λ×gµν

)
≡
(

8×π × γ ×T
c4

)
×gµν (683)

□
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3.34. Objective reality under conditions of zero space-time dimension

Did Einstein get famous because of relativity theory, or vice versa? Did relativity theory got famous
because of Einstein? On April 3, 1921, Einstein arrived in New York Harbor, USA and gave a brief
explanation of his theory of relativity in an interview given to The New York Times as follows:

“Früher hat man geglaubt, wenn alle Dinge aus der Welt verschwinden,

so bleiben noch Raum und Zeit übrig.

Nach der Relativitätstheorie

verschwinden aber Zeit und Raum mit den Dingen.”

(cited according to Max Planck Institute for the History of Science (MPIWG) Einstein, 1921)

In broken English: In former times, it was believed that when all things disappear from the world,
there would still be space and time left. According to the theory of relativity, however, time and space
disappear with things.

Theorem 3.51 (Objective reality under conditions of zero space-time dimension). The relationship
between energy, time and space is the foundation of objective reality.

Proof by direct proof. If the premise
+1 =+1︸       ︷︷       ︸
(Premise)

(684)

is true, then the following conclusion

+

((
R
2

)
×gµν

)
+
(
Λ×gµν

)
≡
(

8×π × γ ×T
c4

)
×gµν (685)

is also true, again the absence of any technical errors presupposed. The premise

+1 ≡+1 (686)

is true. Multiplying equation 686 by the Einstein field equations, we obtain((
R
D

)
×gµν

)
−
((

R
2

)
×gµν

)
+
(
Λ×gµν

)
≡
(

8×π × γ

c4

)
×
(

T
D

)
×gµν (687)

Multiplying the Einstein field equations by D, equation 687 becomes

(
(R)×gµν

)
−
((

R×D
2

)
×gµν

)
+
(
Λ×D×gµν

)
≡
(

8×π × γ

c4

)
× (T )×gµν (688)
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In point of fac, the multiplication by D is valid even under condition where D = 0 because

+0
+0

≡+1 (689)

( (see also Barukčić, 2018, 2019b,c,d, 2020b, Barukčić and Ufuoma, 2020, Barukčić and Barukčić,
2016)). Thus far, under conditions of D=0 space-time dimension, it is

R×gµν −
((

R×0
2

)
×gµν

)
+
(
Λ×0×gµν

)
≡
(

8×π × γ

c4

)
× (T )×gµν (690)

or

R×gµν −
((

R×0
2

)
×gµν

)
+
(
Λ×0×gµν

)
≡
(

8×π × γ

c4

)
× (T )×gµν (691)

In general, under conditions of D=0 space-time dimension, the Einstein field equations become

R×gµν ≡
(

8×π × γ ×T
c4

)
×gµν (692)

However, according to equation 608 it is(
R×gµν

)
+0 ≡

(
Λ×gµν

)
+
(
Λ×gµν

)
(693)

Substituting this relationship into equation 692, it is(
R×gµν

)
+0 ≡

(
Λ×gµν

)
+
(
Λ×gµν

)
≡
(

8×π × γ ×T
c4

)
×gµν (694)

or (
Λ×gµν

)
+
(
Λ×gµν

)
≡
(

8×π × γ ×T
c4

)
×gµν (695)

There are conditions of objective reality where the stress–energy tensor vanishes, i.e. where(
8×π × γ ×T

c4

)
× gµν ≡ +0. Under these conditions of objective reality (the stress–energy tensor

vanishes), equation 695 changes to(
Λ×gµν

)
+
(
Λ×gµν

)
≡
(

8×π × γ ×T
c4

)
×gµν =+0 (696)

Rearranging equation 696, it is
+
(
Λ×gµν

)
≡−

(
Λ×gµν

)
(697)

□

Mathematically, equation 697 is an exact solution of the Einstein field equations and describes an
objective reality in which no matter or no electromagnetic fields are present, a vacuum. However, such
a vacuum according to equation 697 is equally a state of pure symmetry of objective reality, where a
negative is equal to a positive and vice versa. A vacuum is the unity of opposites and grounded on a
contradiction.
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3.35. Schrödinger Wave equation and unified field theory

Among the theoretical issues raised by the Schrödinger wave equation, despite its status as the heart
of contemporary quantum mechanics, is the question, whether is it possible at all to express the Ein-
stein field equations completely in terms of the Schrödinger equation? In other words, what objective
reasons prevent us from expressing the Einstein’s field equations completely in terms of a relativistic
Schrödinger wave equation? Mentioned only incidentally, the definition of an expectation value of a
single event forces us to consider assigning definite values to any physical quantity. Nonetheless, in
what follows, we will no further touch on these topics.

Theorem 3.52 (Schrödinger Wave equation and unified field theory). For our purposes, the most im-
portant features of this theorem is the derivation of a generally covariant form of the Schrödinger
equation as (

RSt ×Ψ(RSt)µν

)
−
(

Rt t ×Ψ(Rt t)µν

)
≡
(

RE t ×Ψ(RE t)µν

)
(698)

Proof by direct proof. If the premise
+1 =+1︸       ︷︷       ︸
(Premise)

(699)

is true, then the following conclusion(
RSt ×Ψ(RSt)µν

)
−
(

Rt t ×Ψ(Rt t)µν

)
≡
(

RE t ×Ψ(RE t)µν

)
(700)

is also true, again the absence of any technical errors presupposed. The premise

+1 ≡+1 (701)

is true. We multiply equation 701 through by equation 302. It is

RSt ≡ E(RE t)+E(Rt t) (702)

or
RSt −E(Rt t)≡ E(RE t) (703)

We multiply equation 703 through by the metric tensor gµν . Under particular conditions, the Einstein
gravitational field equations become

(RSt)×gµν − (E(Rt t))×gµν ≡ (E(RE t))×gµν (704)

Equation 704 changes according to equation 16 to(
Ψ(RSt)×RSt ×Ψ

* (RSt)
)
×gµν −

(
Ψ(Rt t)×Rt t ×Ψ

* (Rt t)
)
×gµν ≡

(
Ψ(RE t)×RE t ×Ψ

* (RE t)
)
×gµν

(705)
Next we consider conditions where Ψ* (RSt)≡ Ψ* (Rt t)≡ Ψ* (RE t). Equation 705 changes to(

Ψ(RSt)×RSt ×Ψ
* (RSt)

)
×gµν −

(
Ψ(Rt t)×Rt t ×Ψ

* (RSt)
)
×gµν ≡

(
Ψ(RE t)×RE t ×Ψ

* (RSt)
)
×gµν

(706)
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In accordance with definition 2.3 and definition 2.4, equation 706 changes to(
Ψ(RSt)µν ×RSt × *

Ψ(RSt)µν

)
−
(

Ψ(Rt t)µν ×Rt t × *
Ψ(RSt)µν

)
≡
(

Ψ(RE t)µν ×RE t × *
Ψ(RSt)µν

) (707)

We carry out the counter operation of the term *Ψ(RSt)µν . After appropriate calculations, equation
707 changes to a Schrödinger wave equation of the gravitational field as(

Ψ(RSt)µν ×RSt
)
−
(
Ψ(Rt t)µν ×Rt t

)
≡
(
Ψ(RE t)µν ×RE t

)
(708)

□

Nonetheless, experience also teaches us that the shorter the line of arguments, the better. The
foundation of the Einstein field equations has been identified (see equation 573) as

R
D
−
(

R
2

)
+(Λ)≡

(
8×π × γ ×T

c4 ×D

)
(709)

Multiplying equation 709 by wave function tensor (see definition 709), it is(
R
D
×Ψ(RSt)µν

)
−
(((

R
2

)
− (Λ)

)
×Ψ(RSt)µν

)
≡
((

8×π × γ ×T
c4 ×D

)
×Ψ(RSt)µν

)
(710)

Under conditions of normalization, examined even in tough conditions, it is that

Ψ(RSt)µν ∩ *
Ψ(RSt)µν ≡ 1µν (711)

where ∩ denotes the commutative multiplication of tensors. From equation 711 follows that

*
Ψ(RSt)µν ≡

1µν

Ψ(RSt)µν

(712)
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3.36. General relativity and causality

Theorem 3.53 (CAUSAL RELATIONSHIP K UNDER CONDITIONS OF THE THEORY OF GENERAL
RELATIVITY).

The world we are living in sees itself as charged with remaking itself, and doubtless feels the need to
change itself permanently. However, these changes don’t have to happen for the better. Does objective
reality posses any mechanism in preventing itself from destroying itself? What is keeping this world
from destroying itself?

In this context, let p(RUklµν . . . ) represent the probability tensor of the tensor of cause RUklµν . . . .
Let 2E(RUklµν . . . ) denote the expectation value of the cause 2

RUklµν . . . . Let E(RUklµν . . . ) denote the
expectation value of the cause RUklµν . . . . Let σ (RUklµν . . . ) denote the standard deviation of the cause

RUklµν . . . . Let 2σ (RUklµν . . . ) denote the variance of the cause RUklµν . . . .

Let p(RWklµν . . . ) represent the probability tensor of the tensor of its own effect RWklµν . . . . Let
2E(RWklµν . . . ) denote the expectation value of the effect 2

RWklµν . . . . Let E(RWklµν . . . ) denote the
expectation value of the effect RWklµν . . . . Let σ (RWklµν . . . ) denote the standard deviation of the effect

RWklµν . . . . Let 2σ (RWklµν . . . ) denote the variance of the effect RWklµν . . . .

Let σ (RUklµν . . . , RWklµν . . . ) denote the co-variance of cause RUklµν . . . and effect RWklµν . . . .

k
(

RUklµν . . . ,RW klµν . . .
)

≡
σ
(

RUklµν . . . ,RW klµν . . .
)

σ(RUklµν . . . )∩σ(RW klµν . . . )

≡
(

p
(

RUklµν . . . ,RW klµν . . .
)
−
(

p
(

RUklµν . . .
)
∩ p
(

RW klµν . . .
)))

2
√

p
(

RUklµν . . .
)
∩
(
1klµν . . . − p

(
RUklµν . . .

))
∩ p
(

RW klµν . . .
)
∩
(
1klµν . . . − p

(
RW klµν . . .

))
(713)

by modus ponens. If the premise
+1 =+1︸       ︷︷       ︸
(Premise)

(714)

is true, then the conclusion

k
(

RUklµν . . . ,RW klµν . . .
)
≡

σ
(

RUklµν . . . ,RW klµν . . .
)

σ(RUklµν . . . )∩σ(RW klµν . . . )
(715)

is also true, the absence of any technical errors presupposed. The premise

+1 ≡+1 (716)

is true. Multiplying this premise (i.e. axiom) by
(

RUklµν . . . ∩ RW klµν . . .
)

it is
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(
RUklµν . . . ∩ RW klµν . . .

)
≡
(

RUklµν . . . ∩ RW klµν . . .
)

(717)

According to equation 109 it is

RUklµν . . . ≡
σ(RUklµν . . . )

2
√

p
(

RUklµν . . .
)
∩
(
1klµν . . . − p

(
RUklµν . . .

)) (718)

Equation 717 changes to(
RUklµν . . . ∩ RW klµν . . .

)
≡

 σ(RUklµν . . . )

2
√

p
(

RUklµν . . .
)
∩
(
1klµν . . . − p

(
RUklµν . . .

))


∩ RW klµν . . .

(719)

Additionally, according to equation 109 it is

RW klµν . . . ≡
σ(RW klµν . . . )

2
√

p
(

RW klµν . . .
)
∩
(
1klµν . . . − p

(
RW klµν . . .

)) (720)

Equation 719 changes to(
RUklµν . . . ∩ RW klµν . . .

)
≡

 σ(RUklµν . . . )

2
√

p
(

RUklµν . . .
)
∩
(
1klµν . . . − p

(
RUklµν . . .

))


∩

 σ(RW klµν . . . )

2
√

p
(

RW klµν . . .
)
∩
(
1klµν . . . − p

(
RW klµν . . .

))


(721)

According to definition 2.35, equation 116, it is

RUklµν . . . ∩ RW klµν . . .

≡
σ
(

RUklµν . . . ,RW klµν . . .
)(

p
(

RUklµν . . . ,RW klµν . . .
)
−
(

p
(

RUklµν . . .
)
∩ p
(

RW klµν . . .
))) (722)

Simplifying equation 721, we obtain(
σ
(

RUklµν . . . ,RW klµν . . .
)(

p
(

RUklµν . . . ,RW klµν . . .
)
−
(

p
(

RUklµν . . .
)
∩ p
(

RW klµν . . .
))))

≡

 σ(RUklµν . . . )

2
√

p
(

RUklµν . . .
)
∩
(
1klµν . . . − p

(
RUklµν . . .

))


∩

 σ(RW klµν . . . )

2
√

p
(

RW klµν . . .
)
∩
(
1− p

(
RW klµν . . .

))


(723)
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Further rearrangement of equation 723 yields the causal relationship between the cause RUklµν . . . and
the effect RWklµν . . . , denoted as k

(
RUklµν . . . ,RW klµν . . .

)
, as

k
(

RUklµν . . . ,RW klµν . . .
)

≡
σ
(

RUklµν . . . ,RW klµν . . .
)

σ(RUklµν . . . )∩σ(RW klµν . . . )

≡
(

p
(

RUklµν . . . ,RW klµν . . .
)
−
(

p
(

RUklµν . . .
)
∩ p
(

RW klµν . . .
)))

2
√

p
(

RUklµν . . .
)
∩
(
1klµν . . . − p

(
RUklµν . . .

))
∩ p
(

RW klµν . . .
)
∩
(
1klµν . . . − p

(
RW klµν . . .

))
(724)

□
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),
de
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te
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as

k( R
U

kl
µ

ν
..

.,
R
W

kl
µ

ν
..

.) ,i
s

gi
ve

n
by

k( R
U

kl
µ

ν
..

.,
R
W

kl
µ

ν
..

.)
≡

σ
( R

U
kl

µ
ν

..
.,

R
W

kl
µ

ν
..

.)
2√ 2 σ

( R
U

kl
µ

ν
..

.) ∩2
σ
( R

W
kl

µ
ν

..
.)

≡
σ
( R

U
kl

µ
ν

..
.,

R
W

kl
µ

ν
..

.)
σ
( R

U
kl

µ
ν

..
.) ∩σ

( R
W

kl
µ

ν
..

.)
≡

( R
U

kl
µ

ν
..

.
∩

R
W

kl
µ

ν
..

.) ∩(
p
( R

U
kl

µ
ν

..
.,

R
W

kl
µ

ν
..

.) −(
p
( R

U
kl

µ
ν

..
.) ∩p

( R
W

kl
µ

ν
..

.)))
2√ ((

R
U

kl
µ

ν
..

.2) ∩(
p
( R

U
kl

µ
ν

..
.) ∩(

1 k
lµ

ν
..

.
−

p
( R

U
kl

µ
ν

..
.))) ∩

( R
W

kl
µ

ν
..

.2) ∩(
p
( R

W
kl

µ
ν

..
.) ∩(

1 k
lµ

ν
..

.
−

p
( R

W
kl

µ
ν

..
.))))

≡
( R

U
kl

µ
ν

..
.
∩

R
W

kl
µ

ν
..

.) ∩(
p
( R

U
kl

µ
ν

..
.,

R
W

kl
µ

ν
..

.) −(
p
( R

U
kl

µ
ν

..
.) ∩p

( R
W

kl
µ

ν
..

.)))
( R

U
kl

µ
ν

..
.
∩

R
W

kl
µ

ν
..

.) ∩
2√ ((

p
( R

U
kl

µ
ν

..
.) ∩(

1 k
lµ

ν
..

.
−

p
( R

U
kl

µ
ν

..
.))) ∩

( p
( R

W
kl

µ
ν

..
.) ∩(

1 k
lµ

ν
..

.
−

p
( R

W
kl

µ
ν

..
.))))

≡
( p
( R

U
kl

µ
ν

..
.,

R
W

kl
µ

ν
..

.) −(
p
( R

U
kl

µ
ν

..
.) ∩p

( R
W

kl
µ

ν
..

.)))
2√ ((

p
( R

U
kl

µ
ν

..
.) ∩(

1 k
lµ

ν
..

.
−

p
( R

U
kl

µ
ν

..
.))) ∩

( p
( R

W
kl

µ
ν

..
.) ∩(

1 k
lµ

ν
..

.
−

p
( R

W
kl

µ
ν

..
.))))

(7
25

)
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♡

3.37. Relativistic Doppler effect

A frame of reference which is moving with an (internal, emitter, sender) observer at rest relative
to an event, a quantum mechanical entity et cetera is denoted by the sign 0. A frame of reference
which is moving and at rest with an (external) observer relative to an event, a quantum mechanical
entity et cetera is denoted by the sign R (stationary of relativistic observer, receiver). In general,
different observers which are stationary relative to each other are sharing the same frame of reference.
However, the reference frames are no longer equivalent under conditions where one observer is moving
uniformly or even accelerating relative to another. A parameter which is invariant will take the same
value or form in every inertial frame reference. In this context, let 0ct denote the speed of the light in
vacuum as determined by the co-moving observer, let 0ft denote the frequency of the light in vacuum
as determined by the co-moving observer (i.e. the emitted frequency), let 0λ t denote the wave-length
of the light in vacuum as determined by the co-moving observer (i. e. the emitted wave-length). In
general, it is

0ct ≡ 0 f t × 0λ t (726)

Furthermore, let Rct denote the speed of the light in vacuum as determined by the (external) stationary
observer, let Rft denote the frequency of the light in vacuum as determined by the (external) stationary
observer (i.e. the observed frequency, the frequency measured which comes from a source 0), let Rλ t
denote the wave-length of the light in vacuum as determined by the (external) stationary observer (i.e.
the observed wave-length). In general, it is

Rct ≡ R f t ×Rλ t (727)

Following Einstein, there are conditions where both observers, the co-moving and the stationary ob-
server will agree on the value of the speed of the light in vacuum. In other words, there are condi-
tions(Einstein, 1905d) where

0ct ≡ Rct (728)

It might remain an open issue whether equation 728 is valid in general(Einstein, 1911, 1912a) and
without any exemption. However, and in contrast to equation 728, both observer need not agree, neither
on the frequency nor on the wave-length. In physics and astronomy, a change of the wavelength (an
increase (i.e. redshift) or a decrease (blueshift)) is often denoted by the letter z.

Theorem 3.54 (The value of z). In general, it is

+1 ≡+1 (729)

Proof by direct proof. The premise
+1 ≡+1 (730)

is true. In the following, we rearrange the premise. We obtain

Rλ t ≡ Rλ t (731)
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Adding 0, equation 731 becomes,
Rλ t − 0λ t + 0λ t ≡ Rλ t (732)

In our understanding, it is 0λ t ≡ Rλ t − 0λ t. Equation 732 becomes

0λ t + 0λ t ≡ Rλ t (733)

Dividing equation 733 by the term 0λ t, it is

0λ t

0λ t
+

0λ t

0λ t
≡ Rλ t

0λ t
(734)

Equation 734 simplifies as
0λ t

0λ t
+1 ≡ Rλ t

0λ t
(735)

In general, we obtain the z value as

z ≡ 0λ t

0λ t
≡ Rλ t

0λ t
−1 (736)

□

A source 0 emitting a wavelength which is moving away from an observer R (receiver), leads to a
redshift (z > 0). A source 0 emitting a wavelength which moves towards the observer R (receiver),
leads to a blueshift (z < 0). Meanwhile, on January 27, 2011, Bouwens et al. (see Bouwens et al.,
2011) identified UDFj-39546284, an object located in the Fornax constellation with a z-value of about
z=10.3 and potentially z = 11.9. The light needed more than 13.2 billion years to reach the Hubble
Space Telescope in earth’s orbit.

Theorem 3.55. The Austrian mathematician and physicist Christian Andreas Doppler (1803-1853)
discovered the Doppler effect(see Doppler, 1842) in the year 1842. Soon, the Dutch Christophorus
Henricus Diedericus Buys Ballot (1817–1890) confirmed(see Ballot, 1845) Doppler’s effect experi-
mentally in the year 1845. In general, Doppler’s effect follows from special theory of relativity, as

0 f t
2

R f t2
≡
(

1− v2

c2

)
(737)

Proof by direct proof. The premise
+1 ≡+1 (738)

is true. In the following, we rearrange the premise. We obtain (see equation 240 and equation 241)

0E t
2

RE t2
≡
(

1− v2

c2

)
(739)

According to the Planck-Einstein energy–frequency relation(see Einstein, 1905a, Planck, 1901), it is

0E t
2 = 0ht

2 × 0 f t
2 (740)
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where 0Et is the energy of a quantum mechanical entity as determined by the co-moving observer (i.e.
the source which is emitting the wave), 0ht is Planck’s constant h as determined by the co-moving
observer (i.e. the source emitting the wave) and equally

RE t
2 = Rht

2 ×R f t
2 (741)

where REt is the energy of a quantum mechanical entity as determined by the stationary observer (i.e.
the observer which is receiving the wave), Rht is Planck’s constant h as determined by the stationary
observer (i.e. the observer receiving the wave). Equation 739 (see equation 740 and equation 741)
simplifies as

0ht
2 × 0 f t

2

Rht2 ×R f t2
≡
(

1− v2

c2

)
(742)

Under conditions where 0ht
2 ≡ Rht

2, equation 742 becomes (according to equation 726 and equation
727 and equation 736)

0 f t
2

R f t2
≡ Rλ t

2

0λ t2
≡
(

1− v2

c2

)
(743)

□

However, determining the relativistic (transverse) Doppler effect(Einstein, 1907) derived as

0 f t
2

R f t2
≡ Rλ t

2

0λ t2
≡
(

1− v2

c2

)
(744)

by experiments need not be identical with determining the classical Doppler effect. The relative ve-
locity of a distant object (with respect to our earth) can be calculated in accordance with the Doppler
effect by measuring the spectral lines in the spectrum of the (distant) object.

3.38. Without momentum no curvature

Theorem 3.56 (Without momentum no curvature ). Momentum is determined by different factors.
However, momentum itself is a determining part of changes too. There are conditions in nature where
without momentum, no curvature will be given. Without exception, these conditions in nature demand
that

bµν ≡ Λ×gµν (745)

Proof by direct proof. The premise
+1 ≡+1 (746)

is true. In the following, we rearrange the premise. We obtain

cµν ≡ (bµν −Λ×gµν)≡ 0 (747)
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From equation 747 follows that
bµν ≡ Λ×gµν (748)

□

Table 13 is illustrating equation 748 in more detail.

Curvature
YES NO

Momentum YES

〈
Gµν

〉 〈
Λ×gµν

〉 〈
8×π × γ

c4 ×D
×gµν

〉

NO

〈
0

〉 〈
(
R
2
×gµν − (Λ×gµν))

〉 〈(
R
2
−Λ

)
×gµν

〉

〈
Gµν ≡

(
R
D
− R

2

)
×gµν

〉 〈
R
2
×gµν

〉 〈
Rµν ≡ R

D
×gµν

〉

Table 13. Without momentum, no curvature.

3.39. If momentum then curvature

Theorem 3.57 (If momentum then curvature ). There are circumstances in nature where momentum
implies curvature. These conditions demand that

cµν ≡−Λ×gµν (749)

Proof by direct proof. The premise
+1 ≡+1 (750)

is true. In the following, we rearrange the premise. We obtain

bµν ≡ (cµν +Λ×gµν)≡ 0 (751)

From equation 751 follows that
cµν ≡−Λ×gµν (752)

□

Table 14 is illustrating equation 752 in more detail.
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Curvature
YES NO

Momentum YES

〈
8×π × γ

c4 ×D
×gµν

〉 〈
0

〉 〈
8×π × γ

c4 ×D
×gµν

〉

NO

〈
−Λ×gµν

〉 〈
R
2
×gµν

〉 〈(
R
2
−Λ

)
×gµν

〉

〈
Gµν ≡

(
R
D
− R

2

)
×gµν

〉 〈
R
2
×gµν

〉 〈
Rµν ≡ R

D
×gµν

〉

Table 14. If momentum then curvature

3.40. Momentum excludes curvature and vice versa

Theorem 3.58 (Momentum excludes curvature and vice versa ). Conditions in nature where momen-
tum excludes curvature and vice versa demand that

cµν ≡ Gµν (753)

and that
bµν ≡ 8×π × γ

c4 ×D
×gµν (754)

while
aµν ≡ 0 (755)

Proof by direct proof. The premise
+1 ≡+1 (756)

is true. In the following, we rearrange the premise. We obtain

aµν ≡
(
Gµν − cµν

)
≡
(

8×π × γ

c4 ×D
×gµν

)
−bµν ≡ 0 (757)

From equation 757 follows that
Gµν ≡ cµν (758)

and that

bµν ≡
(

8×π × γ

c4 ×D
×gµν

)
(759)

□

Table 15 is illustrating equation 758 and equation 759 in more detail.
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Curvature
YES NO

Momentum YES

〈
0

〉 〈
8×π × γ

c4 ×D
×gµν

〉 〈
8×π × γ

c4 ×D
×gµν

〉

NO

〈
8×π × γ

c4 ×D
×gµν −Λ×gµν

〉 〈
R
2
×gµν −

8×π × γ

c4 ×D
×gµν

〉 〈(
R
2
−Λ

)
×gµν

〉

〈
Gµν ≡

(
R
D
− R

2

)
×gµν

〉 〈
R
2
×gµν

〉 〈
Rµν ≡ R

D
×gµν

〉

Table 15. Momentum excludes curvature and vice versa

3.41. Either momentum or curvature

Either momentum or curvature conditions(Barukčić, 2016b) demand that

Curvature
YES NO

Momentum YES

〈
0

〉 〈(
R
2

)
×gµν

〉 〈
8×π × γ

c4 ×D
×gµν

〉

NO

〈(
R
2
−Λ

)
×gµν

〉 〈
0

〉 〈(
R
2
−Λ

)
×gµν

〉

〈
Gµν ≡

(
R
D
− R

2

)
×gµν

〉 〈
R
2
×gµν

〉 〈
Rµν ≡ R

D
×gµν

〉

Table 16. Either momentum or curvature

In the last consequence, either momentum or curvature conditions are based on the relationship

Gµν ≡
(

R
D
− R

2

)
×gµν ≡ R

2
×gµν −Λ×gµν (760)

and at the end demand that (
R
D
×gµν

)
≡
(
R×gµν

)
−
(
Λ×gµν

)
(761)

Other conditions can be found in literature(Barukčić, 2016b).
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3.42. Four basic fields of nature

Theorem 3.59 (Four basic fields of nature).

What are the four fundamental forces of objective reality, or of nature as such? Physics has already
identified different types of interaction like strong nuclear force, weak nuclear force, electromagnetism
and gravitation. However, the outstanding question is whether the fundamental forces of nature can be
merged with the others. In this context, we redefine again the following,

C u r v a t u r e
YES NO

Momentum YES aµν bµν

(
R
D
− R

2
+Λ

)
×gµν ≡ 8×π × γ

c4 ×D
× gµν

NO cµν dµν

(
R
2
−Λ

)
×gµν

Gµν ≡
(

R
D
− R

2

)
×gµν

R
2
× gµν Rµν ≡ R

D
×gµν

Table 17. Fundamental fields of nature.

where aµν is the stress-energy tensor of the ordinary matter, bµν is the stress-energy tensor of the
electro-magnetic field, cµν is the tensor of gravitation, dµν is at this moment an unknown tensor, Gµν

is the Einstein tensor, R is Ricci scalar.

Proof by direct proof. In general, the Einstein field equation demand that

Gµν +
(
Λ×gµν

)︸                  ︷︷                  ︸
le f t−hand side

≡
(

4×2×π × γ

c4

)
×T µν︸                            ︷︷                            ︸

right−hand side

≡ aµν +bµν

(762)

The left-hand side of equation 762 contains already its own the two determining fields, the tensor of
the ordinary matter (aµν ) and the electromagnetic field (bµν ), whatever manipulations might be done
with the left-hand side of the Einstein field equations (see equation 762). It is possible to specify the
left-hand side of the Einstein field equation more precisely. The the tensor of the ordinary matter (aµν )
is already identified as

aµν ≡ Gµν − xµν (763)
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For various reasons not set out, the tensor xµν may stay preliminary, unknown even if the tensor xµν

is already identified (see Barukčić, 2020a,c). Focussed properly, the Einstein tensor is for sure
one on determining part of the tensor of the ordinary matter (aµν ). The stress-energy tensor of the
electromagnetic field (bµν ) is already identified (see Barukčić, 2020a,c) as

bµν ≡ xµν +
(
Λ×gµν

)
(764)

To put it in a nutshell: the term
(
Λ×gµν

)
is certainly one determining part of the stress-energy tensor

of the electromagnetic field (bµν ). Einstein field equations (see equation 762) changes slightly. It is

(
Gµν − xµν

)︸            ︷︷            ︸
oridnary matter

+
(
xµν +

(
Λ×gµν

))︸                    ︷︷                    ︸
electromagnetic f ield

≡
(

4×2×π × γ

c4

)
×T µν︸                            ︷︷                            ︸

right−hand side

≡ aµν +bµν

(765)

The structure of the tensor xµν need to be identified. The relationships of equation 765 are illustrated
in more detail by table 18.

C u r v a t u r e
YES NO

Momentum YES Gµν - xµν xµν +
(
Λ×gµν

) (
R
D
− R

2
+Λ

)
×gµν ≡ 8×π × γ

c4 ×D
× gµν

NO ? ?
(

R
2
−Λ

)
×gµν

Gµν ≡
(

R
D
− R

2

)
×gµν

R
2
× gµν Rµν ≡ R

D
×gµν

Table 18. Fundamental fields of nature in more detail.

However, the structure of neither the field xµν nor of the field cµν nor of the field dµν is identified
(see table 17, page 138). As proofed somewhere else before (see Barukčić, 2016a,b, 2020a,b,c), it
has to be that

R
2
×gµν ≡ bµν +dµν

≡
(
xµν +

(
Λ×gµν

))
+dµν

(766)

Briefly, and in plain words, the addition of the tensors bµν + dµν need to assure that the term
(
Λ×gµν

)
vanish. Consequently, one determining part of the tensor dµν is the term

(
−Λ×gµν

)
while another

and unknown tensor yµν might remain. We obtain

dµν ≡ R
2
×gµν −bµν

≡
(

R
2
×gµν − xµν

)
−
(
Λ×gµν

) (767)
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C u r v a t u r e
YES NO

Momentum YES Gµν - xµν xµν +
(
Λ×gµν

) (
R
D
− R

2
+Λ

)
×gµν ≡ 8×π × γ

c4 ×D
× gµν

NO ?
(

R
2
×gµν

)
- xµν -

(
Λ×gµν

) (
R
2
−Λ

)
×gµν

Gµν ≡
(

R
D
− R

2

)
×gµν

R
2
× gµν Rµν ≡ R

D
×gµν

Table 19. Fundamental fields of nature in more detail from another point of view.

More and more unknown tensors are necessary to solve the problems. The relationships as outlined
just before are illustrated in more detail by table 19.

In general, it is(
R
2
×gµν

)
−
(
Λ×gµν

)
≡ cµν +dµν

≡ cµν +

(
R
2
×gµν − xµν

)
−
(
Λ×gµν

) (768)

Equation 768 simplifies as

0 ≡ cµν − xµν (769)

At the end, it has to be that,

cµν ≡ xµν (770)

The final picture of the four basic fields of nature is pictured by table 20.

C u r v a t u r e
YES NO

Momentum YES Gµν - xµν xµν +
(
Λ×gµν

) (
R
D
− R

2
+Λ

)
×gµν ≡ 8×π × γ

c4 ×D
× gµν

NO xµν

(
R
2
×gµν

)
- xµν -

(
Λ×gµν

) (
R
2
−Λ

)
×gµν

Gµν ≡
(

R
D
− R

2

)
×gµν

R
2
× gµν Rµν ≡ R

D
×gµν

Table 20. Fundamental fields of nature in more detail from another point of view.

One exact solution of the Einstein field equations is the condition that

R
2
×gµν ≡ xµν (771)
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Under conditions of 771, equation 767 becomes

dµν ≡ R
2
×gµν −bµν

≡
(

R
2
×gµν −

R
2
×gµν

)
−
(
Λ×gµν

)
≡−

(
Λ×gµν

) (772)

Under these circumstances (see equation 772 ) the four basic fields of nature were determined, as
illustrated by table 21.

C u r v a t u r e
YES NO

Momentum YES
(

R
D
−R
)
×gµν

(
R
2
+Λ

)
×gµν

(
R
D
− R

2
+Λ

)
×gµν

NO
R
2
× gµν -

(
Λ×gµν

) (
R
2
−Λ

)
×gµν

(
R
D
− R

2

)
×gµν

R
2
× gµν

R
D
×gµν

Table 21. Fundamental fields of nature under conditions where −
(
Λ×gµν

)
is an own fun-

damental field of nature.

There are circumstances where one basic field of nature is determined by the relationship

dµν ≡−
(
Λ×gµν

)
(773)

One aim of the theorem before is to equip researchers with different points of view which are necessary
to focus in more detail on the systematic formulation of the research question, what is the geometrical
structure of the four basic fields of nature. We can’t avoid recognizing again and again that there might
exist circumstances or manifolds which are based on the relationship

dµν ≡−
(
Λ×gµν

)
(774)

□
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Table 22. The four basic fields of nature and general theory of relativity.

C
u

r
v

a
tu

r
e

Y
E

S
N

O

M
om

en
tu

m
Y

E
S
( R D

−
R 2
+

Λ

) ×
g µ

ν
−
( 1

4
×

π
×
( ( F

µ
c
×

F
ν

c) +
( 1 4

×
g µ

ν
×

F
de
×

F
de
)))

( 1
4
×

π
×
( ( F

µ
c
×

F
ν

c) +
( 1 4

×
g µ

ν
×

F
de
×

F
de
)))

( R D
−

R 2
+

Λ

) ×
g µ

ν

N
O

( 1
4
×

π
×
( ( F

µ
c
×

F
ν

c) +
( 1 4

×
g µ

ν
×

F
de
×

F
de
)))

−
( Λ

×
g µ

ν

)
( R 2

×
g µ

ν

) −
( 1

4
×

π
×
( ( F

µ
c
×

F
ν

c) +
( 1 4

×
g µ

ν
×

F
de
×

F
de
)))

( R 2
−

Λ

) ×
g µ

ν

( R D
−

R 2

) ×
g µ

ν

R 2
×

g µ
ν

R D
×

g µ
ν
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3.43. Quantum gravity

Theorem 3.60. In general, it is

h̄×ωµν ≡ h× f µν (775)

Proof by direct proof. At the beginning of this theorem, it is necessary and appropriate that an impor-
tant point is being made about the theoretical starting point. All the subsequent content of this theorem
stems from premise (i.e. axiom)

+1 ≡+1 (776)

Rearranging this equation, we obtain the foundation of the Einstein field equations as

R
D
−
(

R
2

)
+(Λ)≡

(
8×π × γ ×T

c4 ×D

)
(777)

Eq. 777 can be rearranged as(
h̄
h̄

)
×
(

R
D
−
(

R
2

)
+(Λ)

)
≡
(

h
h

)
×
((

8×π × γ ×T
c4 ×D

))
(778)

In the following, eq. 778 can be rearranged as

(h̄)×
((

R
h̄×D

)
−
(

R
2× h̄

)
+

(
Λ

h̄

))
≡ (h)×

(
8×π × γ ×T

h× c4 ×D

)
(779)

Under conditions where ω ≡
((

R
h̄×D

)
−
(

R
2× h̄

)
+

(
Λ

h̄

))
and f ≡

(
8×π × γ ×T

h× c4 ×D

)
it is

h̄×ω ≡ h× f (780)

Multiplying equation 780 by the metric tensor, it is

h̄×ω ×gµν ≡ h× f ×gµν (781)

We define

ωµν ≡ ω ×gµν (782)

and

f µν ≡
(

8×π × γ ×T
h× c4 ×D

)
×gµν (783)

The generally covariant Planck-Einstein relation (referred to as Planck’s energy–frequency relation,
the Planck relation, Planck equation or Planck formula) is given as

h̄×ωµν ≡ h× f µν (784)

□
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The definitions ω ≡
((

R
h̄×D

)
−
(

R
2× h̄

)
+

(
Λ

h̄

))
and f ≡

(
8×π × γ ×T

h× c4 ×D

)
or similar ones(

ω+2 ≡
((

R
h̄×D

)
−
(

R
2× h̄

)
+

(
Λ

h̄

))
and f +2 ≡

(
8×π × γ ×T

h× c4 ×D

))
are based on the assump-

tion, that Einstein’s field equations are nothing more but wave equations and that there is no con-
tradiction between quantum theory and relativity theory. Of course, it is in no way sufficient to clarify
facts by pure definition. Further evidence, especially experimental evidence, is needed in this context
and equally highly valuable.
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4. Discussion

Questions about being, nothing and becoming dominated by a variety of different views with re-
spect to nothing and its relation to becoming have been debated by philosophers and other scientist for
more than two millennia but equally without a resolution in sight. A different, but especially interest-
ing example how to approach to the problem of the logical relationship between theory and (empirical)
evidence has been published by Einstein (see also Howard, 2005). However, with their subject-specific
methodology and terminology, the philosophers explore from their specific philosophical point of view
the same objective reality as the physicists do with their physics-specific terminology and methodol-
ogy. The unity of nature demand to us that a contradiction in this context besides of unquestioned
traditional views would be difficult to accept. Especially, it is not human mind and consciousness or
the subject-specific methodology and terminology which decides how objective reality is and has to
be. For our purposes, modern physics can enable us to generate new insights into those old questions.
Until contrary proof, we assume the identity of being = energy, nothing = time and becoming =
space. These distinctions might prove helpful in the subsequent discussion of these basic notions in
modern science.

Albert Einstein introduced the cosmological term (Einstein, 1917) in his paper of 1917. Soon, the
Dutch astronomer Willem De Sitter (1872–1934) discovered a matter-free anti-Machian cosmological
model (De Sitter, 1917) which contained no matter but still incorporated Einstein’s cosmological
constant. Einstein himself was not very happy at that time with the logical possibility of supposing
matter not to exist. Einstein wrote to de Sitter on March 24, 1917:

“Es wäre nach meiner Meinung unbefriedigend, wenn es eine denkbare Welt ohne Materie gäbe.

Das g-Feld (gravitational field, author) soll vielmehr

durch die Materie bedingt sein,

ohne dieselbe nicht bestehen können. ”

(see also De Sitter, 1917, p. 1125)

It is more than logical to ask the following question: if a world without matter/energy has existed or
theoretically can exist while our world itself is full of matter/energy, where does this matter/energy
come from? Does this mean that matter/energy can be created and if yes, out of what? In the end,
do we have to accept the hypothesis of the creation of matter/energy ex nihilio as correct? What
would the universe look like if a negative cosmological constant were an own fundamental field of
nature? Unfortunately, this is not the place to debate these gigantic and the far-reaching issues. Even
if space-time itself can be flat (Minkowski space (or space-time in 4 dimensions)) or non-flat (i.e.
curved) et cetera, there is considerable doubt, however, about the adequacy of general validity of
equation 774 as a fourth basic field of nature even if an n-dimensional anti-de Sitter spacetime, also
termed de Sitter spacetime (Calabi and Markus, 1962) of the second kind, named after Willem de Sitter
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(1872–1934), corresponds closely to a negative cosmological constant. Theoretically, it seems to me to
be necessary to consider manifolds or circumstances where a negative cosmological constant is a basic
field of nature. However, there remains an open question whether this is in general the case. If we took
equation 773 to its logical conclusion, it would mean that the unity of gravitation and electromagnetism
would be given as

bµν + cµν ≡
(
R×gµν

)
+
(
Λ×gµν

)
(785)

while

bµν + cµν +dµν ≡
(
R×gµν

)
(786)

The four basic fields of nature are identified and illustrated in greater detail by table 22.
Still, we have to leave the question open whether there might exist conditions where a neg-

ative cosmological constant −
(
Λ×gµν

)
might break up into the parts +

(
R
2
×gµν

)
and

−
(

1
4×π

×
((

Fµ c ×Fν
c)+(1

4
×gµν ×Fde ×Fde

)))
as illustrated by equation 787.

−
(
Λ×gµν

)
=⇒+

(
R
2
×gµν

)
−
(

1
4×π

×
((

Fµ c ×Fν
c)+(1

4
×gµν ×Fde ×Fde

)))
(787)

Although, theoretically, we must bear in mind and take into consideration the possibility of a state of
pure symmetry where

+
(
Λ×gµν

)
−
(
Λ×gµν

)
≡+0 (788)

Equation 788 might be the natural foundation for something like spontaneous symmetry (Anderson,
1972) breaking and equally one condition for the beginning of our world. Can we escape from zero,
under which conditions can we escape from zero, the state of pure symmetry, the black hole of mathe-
matics?

5. Conclusion

Following the path of classical logic and relativity theory, a quantization of the gravitational field
appears to be possible.
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Private note

The definition section of a paper need not and does not necessarily contain new scientific aspects.
Above all, it also serves to better understand a scientific publication, to follow every step of the argu-
ments of an author and to explain in greater details the fundamentals on which a publication is based.
Therefore, there is no objective need to force authors to reinvent a scientific wheel once and again
unless such a need appears obviously factually necessary. The effort to write about a certain subject in
an original way in multiple publications does not exclude the necessity simply to cut and paste from
an earlier work, and has nothing to do with self-plagiarism. However, such an attitude cannot simply
be transferred to the sections’ introduction, results, discussion and conclusions et cetera.
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Alexis (1850-1923). Éditeur scientifique: Alexis Bertrand. Vve E. Belin et fils, Paris, 1886. URL https://gallica.bnf.fr/http:
//catalogue.bnf.fr/ark:/12148/cb30781197z. Bibliothèque nationale de France.
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